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Abstract

In this paper we examine the dynamic search of two rivals looking for a prize of
known value that is hidden in an unknown location, modeled as search for treasure on
an island. In every period, the players choose how much to search of the previously
unsearched portion of the island in a winner-takes-all contest. If the players cannot
coordinate so as to avoid searching the same locations, the unique equilibrium involves
complete dissipation of rents. On the other hand, if the players have some (even
limited) ability to coordinate so as to avoid duplicative search and the search area is
sufficiently small, there is a unique equilibrium in which the full area is searched and
each player earns a positive expected return.
Keywords: R&D, search, duplication, uncertainty, coordination.
JEL classifications: D21, O32.

1 Introduction

Consider pharmaceutical firms competing in a race to discover a new drug, paparazzi
searching luxury hotels for a visiting movie star, bounty hunters pursuing a fugitive, or
researchers looking for solutions to the six Millennium Prize Problems in mathematics. All
of these scenarios have attributes of a general problem, namely, a treasure hunt for a prize
of known value in which there is uncertainty regarding the cost of search. Critically, in each
of these cases, a searching party’s incentive changes dynamically as search progresses. For
instance, a paparazzi’s incentive to search depends on the number of remaining unsearched
hotels. Similarly, pharmaceutical companies strategically adjust their effort as research into
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a new medication progresses. The dynamics – and changing nature of search – is critical in
each of these problems. In this paper we analyze a dynamic non-stationary search model
for a known prize, hidden in an unknown location.

To do this, we develop a model in which two players undertake costly search for a
treasure of known value that is hidden somewhere on an island of a given area. We assume
that there is an equal probability that the treasure will be located at any given point
on the island. In each period, both players make their search decisions simultaneously.
Once the treasure is found the game ends. If the treasure is not discovered in any given
period, the game continues. In the next period, each player observes the locations that
have previously been searched. They then decide how much of the remaining area they
wish to investigate. If the treasure is simultaneously discovered – this happens if the two
players successfully search the same part of the island – both players incur their individual
costs but the treasure is destroyed. If a player discovers the treasure on their own, they
receive the full value of the treasure, while both players incur their search costs.

First, we consider the case when the duopolists are unable to coordinate to avoid search-
ing the same location. Given its dynamic nature, we analyze a game in which each state is
described by the remaining unsearched area. Following Maskin and Tirole (1988), we re-
strict our attention to symmetric Markov perfect equilibria (SMPE).1 With uncoordinated
search, there is a unique equilibrium in which the potential value of the prize is completely
dissipated by excessive search. To provide some intuition for this dissipation result, con-
sider the special case when there is only one possible search period. As in the standard
price-setting Bertrand game, each player’s payoff maximizing search behavior drives their
rival’s expected return to zero. The generalized game with more than one possible search
period involves the same essential tradeoff, ensuring complete dissipation. This result has
far reaching economic implications for those party to a treasure hunt, be they pharmaceu-
tical firms, paparazzi, bounty hunters or pirates.

Second, if the players have some ability to coordinate search so as to avoid duplication,
the equilibrium in which all rents are dissipated no longer holds; that is, positive expected
returns are feasible even when the players can only partially coordinate their search activ-
ities. The possibility of coordination may arise between the players through observation.
For example it might be evident where miners are moving their equipment, or the direction
that a paparazzo is heading; a bounty hunter might have better contacts in one area than
another, or might only have a permit to work in a particular jurisdiction. Coordination
could also come about through some form of commitment by a player. For example, the
sort of experts a research department hires provides a (partial) commitment to the di-
rection of their search. Similarly, pharmaceutical companies might need to make public
announcements (in broad terms) about their upcoming clinical trials, and their existing
patents will highlight the most obvious place a firm will start looking for the next genera-
tion of drug. These coordination devices are, of course, only partial – these commitments
can, to a greater or lesser extent, be unwound. Importantly, our modeling suggests that

1Imposing Markov perfection not only makes our analysis simpler, while still being consistent with
rationality, but it also makes our results directly comparable to those in the previous literature. See
Maskin and Tirole (1988), Bhaskar et al. (2012) and Battaglini et al. (2014) for a general discussion of
when the use of SMPE is appropriate.
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however imperfect, the possibility of some coordination creates an environment in which
complete dissipation of rents is not possible. This suggests that a third party (government,
industry association and so on) could improve on the decentralized market outcome, even
if its regulatory technology is quite imperfect.

Third, we extend our analysis of the uniform distribution case to any possible distribu-
tion for the hidden location of the treasure. We do this by approximating the distribution
with a finite number of islands, each with its own likelihood that the treasure is located
underneath its soil; that is, we use a finite number of uniform distribution ‘islands’ to ap-
proximate the distribution.2 Several key results are worth noting here with respect to this
extension. When coordination is not possible, potential rents are completely dissipated as
they are in the uniform distribution case. Furthermore, we can also say something coun-
terintuitive about the pattern of search in this case without coordination. To aid in this,
if an island will be searched in a given period we say that it is attractive for search at that
point in time. Using this terminology, if an island is attractive for search in a given period,
in equilibrium at least some of that island will be searched. In other words, with no coordi-
nation all attractive islands will be searched simultaneously, dissipating all potential rents.
On the other hand, if players can coordinate their search perfectly, equilibrium search is
sequential, with the players moving following unsuccessful search from the islands with the
highest expected return from search effort to the next best option, and so on. As with the
uniform distribution, not all rents are dissipated when there are multiple islands.

Duplication with independent search also arises in the model of Fershtman and Rubin-
stein (1997). They consider a model in which two players search for a single hidden treasure
in one of a given set of labeled boxes. First, each player chooses how many costly search
units they wish to utilize. Second, each player chooses a random search strategy with which
to examine the boxes, where only one box can be examined in any given period by each
search unit. While each player knows the total number of boxes their rival can search, all
research findings are private information. Their model gives rise to some complementary
results to ours. For example, there can be search duplication in equilibrium, when players
search previously opened boxes that are empty. Almost the opposite type of coordination
failure is also possible: with an asymmetric probability that various boxes contain the
treasure, sometimes neither player searches the highest probability box first. The first of
these failures does not occur in our model as previous search is observable to all. The
second outcome is not possible here either due to our focus on pure strategies. Perhaps the
most important similarity is that with independent search rents are completely dissipated
in both models. The intuition is also similar: in Fershtman and Rubinstein (1997) each
player chooses the number of search units in the first stage of the game such that the other
player has a zero expected return; in our paper each searcher chooses an area to investigate
each period that drives the other player’s return to zero.

Duplication and coordination by duopolists in a dynamic R&D search game is the
focus of Chatterjee and Evans (2004). In their model, in each period two competing
firms simultaneously choose to research one of two projects, where only one project will

2This method allows us to model a potentially infinite search space as a finite area (which are the islands
that would be potentially searched in equilibrium).
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eventually be successful (given it has been investigated long enough). As in our model,
previous investment is observable and it is common knowledge. They assume, however,
that firms can coordinate their search in any given period. In Chatterjee and Evans (2004),
only under certain conditions will search be efficient. More typically, the outcome will be
inefficient due to too much duplication (reminiscent of our dissipation result above) or too
much diversification (in which the firms have too much incentive to investigate separate
projects). In particular, if the costs of the two projects are unequal, then there is an
equilibrium in which the high-cost project is searched too often, relative to the socially
efficient choice. One important difference between their model and ours is that per-period
search costs are exogenous in their model, whereas search costs in our model endogenously
depend on the search undertaken in any given period. Critically, search endogeneity and
lack of coordination in our model leads to a complete dissipation of expected rents, which
is not observed in Chatterjee and Evans (2004).

There is a literature that models research contests as rank-order tournaments. In con-
trast to our paper, this literature analyzes the situation in which there are multiple po-
tential innovations that compete against each other. Some examples recently discussed in
the literature include: a 1992 refrigerator competition (see Taylor, 1995), an 1829 steam
locomotion tournament (see Fullerton and McAfee, 1999), a 1714 British contest for a
method of determining longitude at sea (see Che and Gale, 2003). Within this framework,
both Erat and Krishnan (2012) and Konrad (2014) consider the issue of duplication. In
Erat and Krishnan (2012), firms simultaneously select which area (or avenue of research)
of many clearly delineated areas to search. Each avenue has its own value. In equilibrium,
the expected return from choosing any given area is equalized, with more firms opting to
search avenues with a higher value. Coordination is facilitated in Erat and Krishnan (2012)
by the ability to commit to only search in a particular avenue. As in our model with partial
search coordination, and in a similar manner to Chatterjee and Evans (2004), while there
is duplication, not all rents are dissipated. Konrad (2014) also considers a model in which
a firm must choose a specific avenue of research, where these avenues do not overlap. Im-
portantly, if two or more firms choose the same avenue, any rents generated are dissipated,
as in Bertrand competition. Again, it is the ability of firms to commit to search only one
avenue that facilitates coordination. In equilibrium there is no duplication, as no two firms
choose the same avenue of research. In our model, a parallel result arises when duopolists
can perfectly coordinate their search patterns.

In many ways, our paper synthesizes the existing literature, from the model with in-
dependent search of Fershtman and Rubinstein (1997), to the perfect coordination case
in Konrad (2014), to the partial coordination search models in between of Chatterjee and
Evans (2004) and Erat and Krishnan (2012). One important difference between our paper
and the existing literature is that in our model firms are choosing how much to search every
period (allowing for search dynamics). On the hand, Chatterjee and Evans (2004), Erat
and Krishnan (2012) and Konrad (2014) effectively assume that the amount of search is
given exogenously, while in Fershtman and Rubinstein (1997) an equivalent choice is made
only once at the beginning at the game.
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Our work extends the previous research on private-good search.3 These models mostly
deal with situations that are either static or involve complete information.4 One of the
few papers that considers the dynamics of investment within the private-good framework is
Reinganum (1981), who assumes that the success function is exponential and the environ-
ment is stationary.5 As a result, equilibrium strategies can be represented as functions of
time only, which greatly simplifies the analysis.6 The memorylessness assumption, however,
is often not satisfactory; for example, when the attractive search domain, while potentially
large, is finite. As noted above, one of the contributions of this paper is finding equilibria
in a truly dynamic search model, in that players’ choices regarding effort depend on the
remaining unsearched island size. Our framework allows for another important difference
with the existing literature. With a uniform distribution, investing always becomes more
attractive over time, insuring that once firms start investing, they will continue until the
treasure is discovered (or the search area is exhausted). This is very different to the out-
come with an exponential distribution typically used in the literature where, if there is a
positive probability that the project is unsuccessful, investing becomes less attractive over
time and it is possible that the project could be suspended.

2 The Model

In the model, two players (firms) search over an infinite horizon for a treasure hidden
somewhere on an island of size x1 > 0. The treasure has the same value R > 0 for both
players7, and there is an equal probability that the treasure will be located at any given
point on the island.8 Payoffs are discounted at a common factor δ.

Each period t comprises the following sequence of events. First, both players learn the
size and location of all prior searches.9 As a convention, we use the term ‘area’ to mean
the size of land searched and the term ‘region’ to mean the location of the search. Let xt

be the unsearched area of the island at the beginning of period t. Second, each player i
simultaneously plans an area Ii,t ∈ [0, xt] to search at a cost of cIi,t, where c > 0.10 The
regions searched by the players are partially coordinated according to a process discussed

3There is also a large literature on investment dynamics in relation to public goods; for instance, Admati
and Perry (1991), Marx and Matthews (2000), Lockwood and Thomas (2002), Compte and Jehiel (2004),
Yildirim (2004, 2006), Bonatti and Hörner (2011), Matthews (2013), Battaglini et al. (2014) and Georgiadis
(2015).

4See, for example, Loury (1979), Dasgupta and Stiglitz (1980a,b) and Lee and Wilde (1980), and
Reinganum (1989) and Long (2010) for a survey of the literature.

5In the context of our model, this would be equivalent to assuming that the present value of the treasure
is constant.

6Reinganum (1982) uses a similar framework to show how the availability of patent protection can
accelerate development of the innovation.

7As players are risk neutral, in the case of random returns R could be replaced by E[R], requiring no
other changes to the model.

8In Section 4 we consider the case when the distribution is non-uniform.
9Using the terminology of Mailath and Samuelson (2006), we consider a stochastic game with perfect

monitoring in a dynamic setting.
10Non-linear costs are discussed in Section 5.

5



below. Finally, search plans are implemented. If the treasure is found, the game ends. If
both players search the same region and find the treasure simultaneously, each of them
incurs costs, but the treasure is destroyed.11

Suppose that player i searches an area Ii,t in period t, for i = 1, 2. If the region of
search is chosen uniformly at random, the probability that i searches a specific point on
the island is Ii,t/xt. If both players were to choose their search region independently, then
the probability that both players search this particular point would be I1,tI2,t/x

2
t , and the

area of duplicated search would be I1,tI2,t/xt.
12

Under our specification of partial coordination, the extent of duplication is given by
(1 − α)I1,tI2,t/xt, where the parameter α ∈ [0, 1] describes the extent of coordination. If
α = 1, search is perfectly coordinated and duplication is avoided; if α = 0, search is
independent; and α ∈ (0, 1) indicates partial coordination.13

If in any period t, player 1 searches I1,t and player 2 searches I2,t, after accounting for
duplication, the players search an area of

Jt = min {xt, I1,t + I2,t − (1− α)I1,tI2,t/xt} . (1)

Player i has a (Jt−Ij,t)/xt probability of finding the treasure alone and obtains the following
expected payoff in period 1:

Jt − Ij,t
xt

R− cIi,t.

The game ends with probability Jt/xt in period t. If the treasure is not found in period t,
which happens with probability 1− Jt/xt, the unsearched area of the island shrinks to

xt+1 = xt − Jt,

and the game proceeds to period t+ 1.
Player i’s strategy is an infinite sequence of functions specifying how much to search

each period contingent upon any possible sequence of previous searches. We assume that at

11This assumption is standard in the R&D literature. Intuitively, if several players discover the treasure
simultaneously, fierce competition between them runs down the surplus to zero. A good example of such a
situation for just two players is Lockheed and Douglas jet development in the 1960s. For more detail, see
The Economist (1985); and Chatterjee and Evans (2004). Many examples of simultaneous discoveries in
science can be found in Merton (1973).

12 Independent search in each period of our dynamic game mimics the random search strategy of firms in
the static model of Fershtman and Rubinstein (1997). We assume that a player’s unsearched area (which
we model as the [0, xt] segment) can be partitioned into a large number of equally-sized small segments. In
this structure, from each player’s perspective the treasure is equally likely to be located in any one of the
segments. Given player i chooses Ii,t, we assume he will randomly select a portion Ii,t/xt of all unsearched
segments, where each of the unsearched segments is chosen with equal probability. For our analysis, the
area of duplicated search is defined by its limit when the size of each segment goes to zero. See Appendix A
for a detailed explanation.

13Different sources of partial coordination are possible. For example, the parameter α could describe the
degree of flexibility of the players to adapt to the search plans of their rival. Alternatively, α could represent
the proportion of information that is publicly available regarding each player’s search, whereas (1− α) is
the proportion that cannot be credibly revealed. Additional motivation for three different scenarios is
provided in Section 3.
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any stage, the entire history of past searches is common knowledge and can be summarized
by the ‘state’, the current unsearched area. We will consider Markov strategies in which
the past influences current play only through its effect on the current unsearched area. A
pure Markov strategy for player i is a time-invariant map Ii : X → X, where X = [0, x1]
and Ii(x) ∈ [0, x]. Note that for ease of exposition, when convenient we skip subscript t and
indicate that I depends on the current unsearched area x; that is, Ii,t = Ii(x). Also, when
the meaning is clear, we skip subscript i in describing the equilibrium search intensity and
the value function.

We will restrict our attention to symmetric equilibria. Therefore, the solution concept
we use is a symmetric Markov perfect equilibrium (SMPE).14 Moreover, we focus on non-
trivial SMPE; that is, equilibria in which a positive amount of search occurs somewhere
along the equilibrium path. We use the following approach to obtaining the SMPE. Player
i takes the state-contingent search plans of his rival Ij(x) as given. Given this function,
player i solves a standard optimization problem and chooses his optimal search, Ii(x).
However, given that the function Ij(x) is endogenous to the model, to obtain the symmetric
equilibrium we need to find the function Ij(x) such that Ii(x) ≡ Ij(x), where Ii(x) is the
optimal search for player i when he takes Ij as given.

15

Note that when multiple SMPE exist, we focus on the Superior SMPE (SSMPE); that
is, the SMPE with the highest total expected payoff.16

3 Analysis of the model

In this section we consider the equilibrium outcome of the model. To do this, let us first
establish several preliminary results for the general model that we will then use in our
subsequent analysis.

Player i solves the following Bellman equation:

V (x, c, R) = max
Ii∈[0,x]

{
−cIi +

J − Ij
x

R + δ

(
1− J

x

)
V (x− J, c, R)

}
, (2)

where x is the part of the island which is still unsearched before the current period,
V (x, c, R) is the value function for each player (we use the symmetry assumption here),
and J is given by equation (1). The first term in equation (2) describes the player’s costs of
search in the current period. The second term is the player’s expected value from finding
the treasure alone in the current period. The last term is the player’s expected value from
future periods.

To simplify the analysis, we introduce the following lemma.

14We define equilibria in terms of the policy functions I1 and I2, which describe the area but not the
region of search. An equilibrium is therefore consistent with a multiplicity of outcomes relating to the
region of search.

15We discuss both subgame perfect and asymmetric Markov perfect equilibria in Section 5.
16As argued by Fudenberg and Tirole (1985), if one equilibrium Pareto dominates all others, it is the

most reasonable outcome to expect.
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Lemma 1. The following identity always holds:

V (x, c, R)/R = V (cx/R, 1, 1). (3)

Proof. See Appendix B.

An increase in the cost parameter c in the original problem (2) is equivalent to an
increase in the unsearched area size x. On the other hand, an increase in the treasure value
R has two effects; it decreases the unsearched area size x, but it also directly changes the
value function. Effectively, the island size is proportional to c, inversely proportional to R,
and payoffs are denominated in R.17

Slightly abusing notation, rename V (x) = V (x, 1, 1). From Lemma 1 it follows that it
is sufficient to solve equation (2) when R = c = 1; that is,

V (x) = max
Ii∈[0,x]

{
−Ii +

J − Ij
x

+ δ

(
1− J

x

)
V (x− J)

}
. (4)

The following lemma allows us to distinguish between equilibria under independent and
coordinated search.

Lemma 2. Combined search J described by equation (1) exhibits the following properties:
i) If α = 0, I1 < x, and I2 < x, then J < x.
ii) If α ∈ (0, 1], there exist I1 < x and I2 < x such that J = x.

Proof. See Appendix B.

Lemma 2 suggests that if α = 0, the entire island is searched in a given period only
in the case that at least one player searches the entire island. As symmetry requires each
player’s search is the same, it is not possible for the players to search the entire island
without destroying the treasure in a symmetric equilibrium. By contrast, with an element
of coordination, it is possible for the players to complete the search without full dissipation
of the treasure.

3.1 Independent search (α = 0)

Let us first consider the extreme case when players search independently. There are many
situations when it is not possible to avoid duplication. For instance, the set of projects
may have no obvious ordering and it may be very difficult to predict rival search plans;
this means that the two players might end up simultaneously searching the same area.
Duplication is more likely to arise when the players have no common background to rely
on and players cannot observe the search of their rivals. With no common expectation of
the search plans of any player, duplication could be unavoidable.18

17For additional details and comparative statics, see our complementary paper Matros and
Smirnov (2011).

18One example we have in mind is pharmaceutical companies trying to develop a new product, such as a
sleeping pill. Given the secrecy surrounding work in these laboratories, it is not possible to guarantee that
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Utilizing Lemma 2, when α = 0 equation (1) transforms to:

J = I1 + I2 − I1I2/x. (5)

We analyse this case in the following proposition.

Proposition 1. If α = 0, in the unique SMPE

I(x) = max{0, x− x2} and V (x) ≡ 0.

Proof. See Appendix B.

To get some intuition, let us consider the static problem where players can only search
once and α = 0. Substituting for J , the problem in this case is

V (x) = max
Ii∈[0,x]

{
−Ii +

Ii
x

(
1− Ij

x

)}
= max

Ii∈[0,x]

{
Ii(x− x2 − Ij)

x2

}
.

If the search by its rival is Ij < x − x2, it is a dominant strategy for player i to choose
Ii(x) = x. If, on the other hand, search by the other player is Ij > x− x2, it is a dominant
strategy for player i to opt Ii(x) = 0. There is a unique symmetric equilibrium in which
both players search I(x) = max{0, x − x2} and each receives a value of zero. This result
mimics the outcome in the standard Bertrand price-setting game in which the best response
of each player ensures that all of the potential rents are dissipated in equilibrium.

In a similar manner, in the equilibrium of the dynamic game the island has no value
to either player for any x. To see why this is an equilibrium, note that if V (x) = 0 for
all x, then (4) reduces to the static problem above, and the unique solution has a value of
zero for both players. Because of the contraction property of the dynamic problem, this
equilibrium is unique. The economic intuition for this equivalence between the static and
dynamic problems is that there is effectively no connection between the periods; there is
no benefit for a player to wait until next period, as in the next period players face exactly
the same problem.

Note, not only do we have duplication in this extreme case with α = 0, the duplication
here is so egregious that the whole value of the treasure is dissipated in equilibrium. Thus,
independent search gives rise to an extreme example of the tragedy of the commons. A fea-
ture of equilibrium is that the island is never searched completely and search may continue
for arbitrarily many periods.

3.2 Coordination α ∈ (0, 1]

We next consider the case when the parties have some ability to coordinate their search
for the treasure. As mentioned above, there are times when parties can commit to a

there is no duplication by rivals. For example, Eichler et al. (2013) discuss a documented case of duplication
in medical research. Chatterjee and Evans (2004) also provide case-study evidence of simultaneous discovery
leading to a dissipation of potential profits.
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search pattern or to focus (or not) on a particular location. For example, pharmaceutical
companies might have to lodge broad plans with the regulator regarding their upcoming
clinical trials; these plans provide some (potentially imperfect) commitment to a given
search strategy. Similarly, the hiring of experts in a given area of expertise, or the purchase
of specific research hardware can also be observable commitment. Another possibility is
that at the start of each period each player decides on the size of their research budget and
specific search locations, but only the choice of research budget is observable to its rival
(possibly through required public announcements for a publicly listed firm). Given these
budgetary commitments (which determine the area each player searches in that period), it is
in the interests of the two rivals to coordinate in an attempt to avoid duplication. However,
if it is too costly to adjust all search locations, only partial coordination is possible.19 In the
model, α indicates the proportion of a player’s search that can be adjusted, whereas (1−α)
is the proportion of search that is sufficiently inflexible so that it cannot be adjusted.20 The
generalization presented in this section allows us to capture both partial coordination of
search (0 < α < 1) and perfect coordination (α = 1).

To simplify the exposition of the model, it is convenient to introduce the following
function:

Ψ(x) ≡ xV (x). (6)

In terms of Ψ(x), equation (4) can be rewritten as

Ψ(x) = max
Ii∈[0,x]

{J − Ij − xIi + δΨ(x− J)}. (7)

Note that equation (7) resembles the problem of extraction of exhaustable resources under
common access or, equivalently, a multi-player cake-eating problem.21

Before proceeding, we introduce the following operator B defined by

(BΨ)(x) ≡ max
Ii∈[0,x]

{J − Ij − xIi + δΨ(x− J)}. (8)

This allows us to consider the following lemma.

Lemma 3. If 0 < α ≤ 1, there exists finite T such that
(a) any non-trivial SMPE involves Jt > 0 for 0 ≤ t ≤ T , and xT+1 = 0; and
(b) all SMPE can be obtained in T steps. Specifically,

Ψ0 ≡ 0, Ψs ≡ BΨs−1 for s = 1, 2, . . . , T, and Ψ = ΨT .

Proof. See Appendix B.

Lemma 3 suggests that the treasure is found in finite time in any non-trivial SMPE.

19For example, we could assume that both parties reveal all locations of their search but only one party
can reallocate some of the locations they initially planned to search.

20Chatterjee and Evans (2004) and Erat and Krishnan (2012) generate partial coordination by allowing
perfect coordination with respect to project selection and independent search within a project.

21See for example Long (2011) for a recent survey of dynamics games in the economics of natural
resources.
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Discounting and coordination play important roles in this result. Discounting ensures
that the value of indefinite search converges to zero. If search ever commences, it will be
completed in finite time. To see the role of coordination, recall from Lemma 2 that only if
search is coordinated is it possible to search the entire island and obtain positive value.

Furthermore, Lemma 3(b) reveals that the finite application of the operator B repre-
sents an algorithm for solving the Bellman equation. From this, we derive the following
proposition.

Proposition 2. If 0 < α ≤ 1, ∀ x ≤
√
α
(
1− δ

√
α

1+
√
α

)
in the unique SMPE

I(x) =
x

1 +
√
α

and V (x) =

√
α− x

1 +
√
α

> 0.

Proof. See Appendix B.

This Proposition shows that when players have some non-zero ability to coordinate,
the extreme dissipation result of Proposition 1 does not hold. Coordination allows for
the existence of equilibria with some search duplication and a value function that is non-
zero. Lemma 2 plays an integral role in this result. With coordination, it is possible for
a combined search to cover the whole island without each player perfectly duplicating the
locations searched by its rival; this ensures that for a sufficiently small island, there is a
positive-payoff strategy for both players.

This has potential policy implications. A government agency or regulator can improve
welfare by insisting on some publicly available information or announcement by innovating
firms (this could be a condition of receiving government subsidies or approval). Indeed,
the amount of information contained in these statements need not be onerous to help
the players avoid the extreme dissipation of value. This provides another justification for
public announcements regarding intent to file patent applications and for the requirement
of pharmaceutical companies to register with the industry regulator information regarding
pending clinic trials.

3.3 Perfect coordination (α = 1)

We next consider perfectly coordinated search.22 There are many situations when it is
possible to avoid duplication. If, for example, players can uniquely order all potential
projects in a line, the two players have a choice to start searching from the left or the
right, avoiding duplication. (This game effectively has two asymmetric equilibria, with
each player commencing their search from different ends.) Another example is when the
treasure is located on one of two separate islands; again, the players can avoid duplication
by searching the island not occupied by their rival. Similar intuition applies when search
requires some machinery (digging equipment, for instance). Not only does this provide
observability as to the location of a rival’s search, it might also make duplication physically

22An equivalent perfect coordination assumption is made in the previous R&D literature; see for example,
Cardon and Sasaki (1998) and Konrad (2014).
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impossible.23 Perfect coordination is also consistent with one of the firms being able to
adjust their search plans in the second stage of each period, as discussed at the beginning
of Section 3.2.

When α = 1 equation (1) transforms to

J = min {x, I1 + I2} . (9)

Based on Lemma 3, define d to be the maximum number of search periods when α = 1.
One then can construct the sequence {Ψs}ds=1 and find all SMPE. This is called the value-
iteration procedure, which is equivalent to using backward induction. In general, there will
be multiple SMPE. As discussed earlier, in the case of multiplicity we focus on the SSMPE.

We first define the polynomials Ps(x) and critical island sizes χs, for s = 1, . . . , d,24

Ps(x) = −1

2
(1− x)2 +

1

2s
(1− x) +

(4δ)s − 4δ

2(4δ − 1)4s
for s = 1, . . . , d; (10)

χs = 1− 3δ + (4δ)s(δ − 1)

2s(4δ − 1)
for s = 1, . . . , d− 1 and (11)

χd = 1 +
1

2d

(√
1− (4δ)d

1− 4δ
− 1

)
where d =

⌈
ln ((δ2 + 2δ)/(1− δ)2)

ln (4δ)

⌉
.

Next we give a complete characterization of the SSMPE when α = 1 in the following
proposition.

Proposition 3. If α = 1, the non-trivial SSMPE exists if and only if x ≤ χd and is
described as follows. The search intensity of each firm is

I(x) =



x
2
, if x ≤ χ1,

(1−δ)(1−x)+δ/2
2δ

, if χ1 < x ≤ χ2,
...
(1−δ)(1−x)+δ/2s−1

2δ
, if χs−1 < x ≤ χs,

...
(1−δ)(1−x)+δ/2d−1

2δ
, if χd−1 < x ≤ χd;

23Moreover, a third party like a government can often help firms avoid duplication. For example, patents
prevent rivals encroaching on a firm’s established area of expertise. Similarly, governments issue exclusive
exploration licences to mining companies.

24Some of the expressions below are presented as ratios for expositional purposes. In particular, note that
both numerators and denominators in Ps, χs, χd and d are equal to zero when δ = 1/4. These expressions
are then defined by their limits as δ → 1/4.
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Figure 1: The equilibrium search intensity and value for duopolists when δ = 0.75.

and the value function for each firm is

V (x) = Ψ(x)/x =


P1(x)/x, if x ≤ χ1,
...
Pd(x)/x, if χd−1 < x ≤ χd.

Proof. See Appendix B.

Proposition 3 describes a finite horizon search for sufficiently small islands. In the non-
trivial SSMPE duopolists plan to search the island for at most d periods when x ≤ χd.
There are d possibilities, depending on the island size. If x ≤ χ1, the duopolists search the
island in just one period. If x ∈ (χ1, χ2], the firms plan to search the island for at most
two periods. In general, the duopolists plan to search the island for at most s periods for
values of x ∈ (χs−1, χs], where s = 2, . . . , d.

As one can see from Proposition 3, the equilibrium search intensity I(x) is a spline of
degree one on the interval [0, χd] with knots χ1, ..., χd.

25 Let us characterize the equilibrium
search intensity in the following corollary.

Corollary 1. If α = 1 and x ≤ χd, the equilibrium search intensity I(x) is a piece-wise
linear, discontinuous and quasiconcave function.

Proof. See Appendix B.

Figure 1a illustrates the equilibrium search intensity for different island sizes in the
SSMPE for each duopolist when δ = 0.75. In this case d = 4. The equilibrium search
intensity is a discontinuous function. At each knot of the spline χs, the equilibrium strategy
of a firm switches from searching for s periods to searching for s + 1 periods. The fact
that each firm maximizes its own value, not total surplus, leads to this discontinuity. The
discontinuities allow one to discern the intertemporal path of search by reading from right to
left. Observe that, conditional on the search being conducted in 4 periods, the equilibrium

25A spline is a special function defined piecewise by polynomials, see for example Ahlberg, Nielson, and
Walsh (1967).
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search intensity is increasing in the first 3 periods. In the last period the equilibrium search
intensity decreases. This is due to the fact that, while in the last period the duopolists
search all of the remaining land, this search area in the last period can in fact be smaller
than the area searched in the second-to-last period.

The following corollary characterizes the value function V (x), as derived in Proposi-
tion 3.

Corollary 2. If α = 1 and x ≤ χd, the value function V (x) is a continuous and monoton-
ically decreasing function.

Proof. See Appendix B.

Figure 1b illustrates the value function when δ = 0.75. Observe that the value function
is monotonically decreasing with the size of the unsearched area because it is harder to find
the treasure on a larger island. However, the value function is not smooth; the slope of the
value function changes at knots χs, coinciding with the discontinuities in the equilibrium
search intensity.

3.4 The possibility of futile search when α = 1

So far we have assumed that the treasure is located on the island with certainty. To add
some extra realism, here we analyze the possibility of futile search. Specifically, we consider
that the probability that the treasure exists on an island of size x′ be p ∈ (0, 1] for the case
when α = 1.

One possible interpretation of futile search is that the treasure is located on the island
for sure but players may search only some part of the island. Extend the island to a size
x = x′/p with the convention that the treasure belongs to the island of size x with certainty,
but only the portion x′ can be searched, while the remainder is not accessible. That is, we
assume the treasure is located with uniform probability on the area of size x. Further, we
denote the portion of the island inaccessible by the players as γ = x− x′.

Using this new structure, equation (4) transforms to

V (x) = max
Ii∈[0,x−γ]

{
−Ii +

J − Ij
x

+ δ

(
1− J

x

)
V (x− J)

}
, (12)

where
J = min {x− γ, I1 + I2} . (13)

The only difference from the main model is that an area γ ≥ 0 cannot be searched. As
before, it is convenient to introduce the function Ψ(x) ≡ xV (x). Equation (12) transforms
to

Ψ(x) = max
Ii∈[0,x−γ]

{J − Ij − xIi + δΨ(x− J)}. (14)

Next we show that the problem with γ > 0 can be transformed to the original problem
with γ = 0.
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Figure 2: I(x), V (x) when δ = 0.75, γ = 0.5.

Proposition 4. Substitutions x′ = x−γ
1−γ

and Ψ′ = Ψ
(1−γ)2

transform problem (14) into

problem (7).

Proof. See Appendix B.

Proposition 4 implies that the problem (14) can be derived from (7) by a linear trans-
formation. Intuitively, both (7) and (14) represent a multi-player cake eating problem. In
this game, each player’s strategy depends only on the remaining cake size (be it x or x−γ),
making both problems isomorphic. Therefore the perturbed model retains the properties
of the original. In particular, searching becomes more attractive over time and, as a result,
in any non-trivial equilibrium, players will continue to search until they either find the
treasure or have searched the entire accessible region.

Figure 2 illustrates the equilibrium search intensity I(x) (panel a)) and the value func-
tion V (x) (panel b)) when δ = 0.75 and γ = 0.5. The substitution x′ = 2x− 1 transforms
Figure 2a to Figure 1a. Note that for x ≤ γ, search is not possible. When x > γ, because
of the transformation, search intensity appears more sensitive to island size.

On the other hand, in Figure 2b the value function is very different from the one
represented in Figure 1b. The transformation from Ψ back to the original value function
creates an additional effect. When x ≈ γ, an increase in x leads to a significant increase in
the probability that the treasure is located on the part of the island that can be searched.
This leads to a sharp increase in value, as shown in Figure 2b. However, once the island
is significantly larger than γ, further increases in x have a relatively small impact on the
probability that the treasure belongs to the searchable part of the island. In this case, the
increase in the cost of searching the entire island has a larger effect, and value declines in
x. Consequently, there is a non-monotonic relationship between the value and island size.
As in the main model, and for the same reasons, the value function is not smooth.

3.5 Coordination and dynamics

Let us now compare investment dynamics with independent and perfectly coordinated
search. Figure 3 illustrates the equilibrium search intensity of each player, I(x) (panel a)),
and the combined search, J(x) (panel b)), when δ = 0.75, both when α = 0 and α = 1.
For small island sizes, the players search the entire island in a single period under perfect
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Figure 3: I(x), J(x): α = 0 is concave, α = 1 is piecewise linear; δ = 0.75.

coordination. This leads to a linear relationship between x and both I(x) and J(x) for small
x. Now consider uncoordinated search when x is small. Because of duplication, each firm
searches more than they would with coordination. However, jointly the area searched by the
two rivals is actually less with independent search, as their combined search does not cover
the whole island (Lemma 2). With larger island sizes, search intensity in any one period is
complicated by the sequencing of search over time, and it is possible for both individual and
combined search to proceed more quickly without coordination.26 Furthermore, as noted
above, the value from search with duplication is always zero, whereas with coordination
there is a positive value of search for each player provided x < χd.

4 Non-uniform distribution

In this section we modify the basic model to allow a non-uniform distribution for the
location of the treasure. We investigate the cases of independent search (α = 0) and
perfect coordination (α = 1) separately.

Consider n ≥ 2 islands, indexed by k = 1, . . . , n. Assume that within each island there
is an equal probability that the treasure will be located at any given point. Each island k is
described by its size x(k) and the probability p(k) that the treasure is located on the island.
The attractiveness of island k for search is determined by the probability of finding the
treasure per unit area of the island. Without loss of generality, we order islands according
to this measure:

p(1)

x(1)
>

p(2)

x(2)
> · · · > p(n)

x(n)
> 0 with p =

n∑
k=1

p(k) ≤ 1, (15)

where p is the probability the treasure is located on one of the islands. By adjusting the
vector of island sizes and probabilities, we can approximate arbitrary distributions over the
location of the treasure.27

26Specifically, when δ → 1, χ2 → 3/4. In the neighborhood to the right of χ2 when δ ≈ 1, both individual
and combined search intensities are higher with independent search.

27We follow recent papers of Erat and Krishnan (2012) and Konrad (2014) in modelling non-uniform
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Each player i now has to choose how to structure his search across the n islands. We
denote the current state by the vectors X = (x(1), . . . , x(n)) and p = (p(1), . . . , p(n)) and

the current value to player i as V (X,p). Player i chooses the policy functions I
(k)
i (X,p),

for k = 1, . . . , n, which describe the extent of simultaneous search he undertakes on each
of the n islands in the current period. As in the main model, if the treasure is not found
in the current period, the unsearched area of each island k shrinks to

x
(k)
t+1 = x

(k)
t − J

(k)
t , (16)

where J
(k)
t = min

{
x
(k)
t , I

(k)
1,t + I

(k)
2,t − (1− α)I

(k)
1,t I

(k)
2,t /x

(k)
t

}
and J = (J (1), . . . , J (n)). Fol-

lowing the current period search, the probability of finding the treasure in each island k
updates according to Bayes’ rule as follows:

p
(k)
t+1 =

p
(k)
t (1− J

(k)
t /x

(k)
t )

1−
∑n

m=1 p
(m)
t J

(m)
t /x

(m)
t

. (17)

The Bellman equation faced by each player i is then

V (X,p) = max{
I
(k)
i ∈[0,x(k)]

}n

k=1


n∑

k=1

−I
(k)
i +

p(k)
(
J (k) − I

(k)
j

)
x(k)

 (18)

+ δ

(
1−

n∑
k=1

p(k)J (k)

x(k)

)
V (X ′,p′)

}
,

where transitions X → X ′ and p → p′ are specified by relationships (16) and (17).
The first term describes the current period costs and expected benefit of search across all
n islands. The second term represents the continuation value of the remaining vector of
unsearched islands. In a similar manner as to how we defined the operator B in equation (8)
from the Bellman equation (7), here we introduce operator B̄ based on equation (18).

4.1 Independent search (α = 0)

We first reexamine the case of independent search.

Proposition 5. If α = 0, in the unique SMPE, I(k)(X,p) = max{0, x(k) − (x(k))2/p(k)}
where k ∈ {1, n} and V (X,p) ≡ 0.

Proof. See Appendix B.

Proposition 5 suggests that the extreme dissipation result of the basic model extends to
heterogeneous distributions over the location of the treasure. That is, for any distribution,
when α = 0 duplication is so egregious that the entire value of the treasure is squandered in

distributions as we partition the landscape into sites (islands) described by different probabilities.

17



equilibrium. The pattern of search has the following characteristics. First, in each period
only islands that have p

(k)
t > x

(k)
t will be searched in equilibrium, and all of these islands

will be searched simultaneously by both players, with the intensity of search in island k
increasing in the attractiveness of search, given by equation (15). Second, after search is

completed in any period, p
(k)
t updates to p

(k)
t+1 according to Bayes’ rule (17). As a result,

search could expand to include new islands. This occurs for islands k with p
(k)
t ≤ x

(k)
t and

p
(k)
t+1 > x

(k)
t+1. Finally, note that in a similar manner to the uniform distribution case, in

equilibrium none of the islands will ever be completely searched.

4.2 Perfect coordination (α = 1)

Now consider perfect coordination.

Proposition 6. If α = 1,
(1) in any SMPE, island k is searched in period t only if islands 1, . . . , k− 1 are exhausted
in period τ , where τ ≤ t;
(2) there exists finite T such that

(a) any non-trivial SMPE involves J
(k)
t > 0 for 0 ≤ t ≤ T for at least one k, and x

(k)
T+1 = 0

for all k; and
(b) all SMPE can be obtained in T steps. Specifically,

V0 ≡ 0, Vs ≡ B̄Vs−1 for s = 1, 2, . . . , T, and V = VT .

This proposition outlines the outcome when there are multiple islands that differ. In this
case, part (1) states that the players will search the islands in order of their attractiveness,
undertaking an exhaustive search before moving onto the next most attractive island. This
is a similar result to Choi and Gerlach (2014) in which researchers move from the most
attractive option down. This is a significantly different search pattern from one we observed
in the independent search case studied earlier in this section. Part (2) extends the result
in Lemma 3 with partial coordination, showing that search will be successful in finite time
when there is perfect coordination and multiple islands. This ensures a positive expected
return provided the project is close to completion. Taken together, Propositions 5 and
6 demonstrate the key role that coordination has in facilitating that all rents are not
completely dissipated in the case of a non-uniform distribution regarding the location of
the treasure.

5 Discussion

This paper considers duplication of search in a model with two players seeking to discover
a prize of known value that is hidden in an unknown location. We model search as a
dynamic R&D race in a non-stationary environment and a finite search space. We show
that duplication can be extreme – when the players are unable to coordinate their search at
all, the unique equilibrium involves complete rent dissipation. Coordination, be it partial
or perfect, can help alleviate some of these duplication issues, allowing players to earn
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positive expected returns. Consequently, this model has a clear implication for the role of
a third party (a government, industry group or regulator) in facilitating coordination in
research environments.

Several caveats relating to the model are worth commenting on. First, we use the SMPE
as our equilibrium solution concept. There also exist asymmetric Markov perfect equilibria,
where in every period each player searches a different amount. Using a similar approach,
we consider an example of an asymmetric Markov perfect equilibrium in Appendix B.
In addition, there exist other non-Markovian symmetric equilibria that rely on trigger
strategies similar to those in Compte and Jehiel (2004). In the case of small islands, the
only symmetric equilibrium that exists is the SMPE. Players can always finish the search
in one period, so trigger strategies are not useful in supporting cooperation. In contrast, in
the case of large islands with a large number of potential search periods, trigger strategies
may improve payoffs and additional equilibria can exist.

Finally, in the model we assume linear search costs. In a complementary paper, Matros
and Smirnov (2011) focus on the comparative statics of monopoly versus duopoly and
multi-player games allowing for quadratic costs.

Appendix A

For notational simplicity, we omit time subindexes. Here we provide micro-foundations as to why
the area of duplication with independent search is I1I2

x (see footnote 12).
Without loss of generality, let us model the unsearched area at a given point in time by con-

sidering a segment [0, x]. We assume that [0, x] can be partitioned into N equally-sized segments,
where N is large. There are NI1

x and NI2
x segments that are searched by players 1 and 2 re-

spectively. We consider the limit when N goes to infinity, and therefore we can ignore issues of
discreteness.

We use the search of player 1, without loss of generality, as a reference by reordering all the
segments so that the segments searched by player 1 are closest to the left corner of the original
[0, x]. As a result, [0, x] is divided into two parts: [0, I1] where player 1 searches and [I1, x] where
player 1 does not search. Given search is independent, NI2

x segments are randomly selected among
all N segments. As a consequence, search duplication is given by the amount of search the second
player undertakes in the [0, I1] segment.

Let us define k as the number of small segments that land in the [0, I1] segment, describing the
resulting number of successes. There are n = NI2

x draws, without replacement, from a population

of size N that contain K = NI1
x successes, wherein each draw is either a success or a failure. k

is a random variable with a hypergeometric distribution. As the size of each small segment is x
N ,

the area of duplicated search is equal to A = kx
N . Consequently, search duplication is distributed

with the mean of E[A] = I1I2
x and the variance of V ar[A] = I1I2(1−I1/x)(1−I2/x)

N−1 . As N → ∞, the

distribution of A becomes degenerate with the probability mass function equal to 1 at I1I2
x .

Appendix B

For notational simplicity, when convenient we omit firm and time subindexes.
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Proof of Lemma 1

We introduce the new variables x̃ = cx/R, Ĩi = cIi/R, Ĩj = cIj/R and J̃ = cJ/R and substitute
them into problem (2). This substitution results in

V̄ (x̃, 1, R) = max
Ĩi∈[0,x̃]

{
−ĨiR+

J̃ − Ĩj
x̃

R+ δ

(
1− J̃

x̃

)
V̄ (x̃− J̃ , 1, R)

}
, (19)

where V̄ (x̃, 1, R) = V (x, c, R). Next, substitute ¯̄V (x̃, 1, 1) = V̄ (x̃, 1, R)/R into equation (19) to
derive

¯̄V (x̃, 1, 1) = max
Ĩi∈[0,x̃]

{
−Ĩi +

J̃ − Ĩj
x̃

+ δ

(
1− J̃

x̃

)
¯̄V (x̃− J̃ , 1, 1)

}
,

which coincides with problem (2) when R = c = 1. Consequently, V (x, c, R)/R = V (cx/R, 1, 1)
proving the Lemma. �

Proof of Lemma 2

Substitute I1 = x− ε1, I2 = x− ε2 and α = 0 into (1) to derive

J = x− ε1ε2/x.

Part i) follows directly.
To prove part ii) assume that I1=I2. Condition J ≥ x transforms to Ii ≥ x

1+
√
α
. This

concludes the proof. �

Proof of Proposition 1

In the proof below we follow the argument presented in the proof of Proposition 1 in Ericson and
Pakes (1995).28 Introduce the following operator B̃ defined by

(B̃V )(x) ≡ max
I∈[0,x]

{
−I +

J − Ij
x

+ δ

(
1− J

x

)
V (x− J)

}
, (20)

where the solution has to satisfy I = Ij and J = I + Ij − IIj/x. By the contraction property of
the operator defined in equation (20), V (x) = lims→∞ Vs(x), where Vs(x) ≡ B̃Vs−1(x) ≡ B̃sV0

and V0 ≡ 0. The remainder of the proof follows by induction. V0 ≡ 0, so an induction argument
for s = 0 is satisfied. Assume that Vs ≡ 0, and let us show that Vs+1 ≡ 0. Substituting Vs ≡ 0
into the right hand side of equation (20), cancels out the continuation term on the right, yielding

Vs+1(x) = B̃Vs(x) ≡ max
I∈[0,x]

{
−I +

I

x

(
1− Ij

x

)}
. (21)

First, consider when x ≤ 1. If the search by the other player Ij < x−x2, it is a dominant strategy
for player i to choose I(x) = x. If, on the other hand, search by the other player Ij > x − x2,
it is a dominant strategy for player i to opt for I(x) = 0. Moreover, if search by the other
player Ij = x− x2, then player i is indifferent among all I ∈ [0, x]. There is a unique symmetric

28Also see Stokey, Lucas and Prescott (1989).
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equilibrium where both players search I(x) = x− x2 and the value each receives is zero; that is,
Vs+1 ≡ 0. Taking the limit gives V (x) = lims→∞ Vs(x) ≡ 0.

Second, consider when x > 1. Observe that the payoff in (21) is negative unless I(x) = 0.
This concludes the proof. �

Proof of Lemma 3

Suppose (a) is not satisfied. First, if It = 0 for some t = t̂, the Markovian assumption implies
search remains zero for ∀ t > t̂. Hence, there are finitely many search periods. Assuming that
the game lasts an infinite number of periods, this means that search in some periods will take
arbitrarily small amounts, i.e. for ∀ ε0 > 0 ∃ ε ∈ (0, ε0) and ∃ t ∈ N such that It = ε ≪ x.
It also means that there will be an infinite number of such periods. From (7) it follows Ψ(x) =
(1− x)ε+ δΨ(x− J) + o(ε), which can be rewritten as

Ψ(x− J) =
Ψ(x)− (1− x)ε+ o(ε)

δ
, (22)

where J = 2ε+ o(ε).
Let us prove that in this case Ψ(x) must be arbitrarily close to zero. Assume on the contrary

that Ψ(x) is equal to some positive value that is not infinitely small. By iterating equation (22) a
large number of times it is possible to show that ∃ x̂ ∈ (0, x) such that Ψ(x̂) can be larger than any
positive value. However, by construction Ψ(x̂) = x̂V (x̂) ≤ x̂. We have reached a contradiction,
proving that Ψ(x) must be arbitrarily close to zero.

For values of x < 1, Ψ(x) can not be arbitrary close to zero, because each player will have
incentive to deviate by choosing I = x − ε + O(ε2) and generating Ψ(x) = (1 − x)x + O(ε) > 0.
Note that this argument works even when x is very small, because a given x > 0 can not be
infinitely small.

When x = 1 a similar argument applies; in the first period a player has an incentive to deviate
by making a positive contribution, for example I = 0.5. In this case, Ψ(1) = δΨ(0.5− ε) +O(ε).
Given that Ψ(x) is not arbitrarily close to zero when x < 1, Ψ(1) is also not arbitrarily close to
zero.

When x > 1 a slightly different proof is used. For a given size of island x1 > 1, each player
makes a positive search I1 > 0 in the first period. Assuming that the game lasts an infinite
number of periods, search has to take arbitrarily small values, i.e. for ∀ ε0 > 0 ∃ ε ∈ (0, ε0) and
∃ t ∈ N such that It = ε, where x > 1 and t > 1. It also means that there will be an infinite
number of such periods. As shown above, in this case Ψ(x) is arbitrarily small. However, in the
first period players make a positive search I1 > 0, which means they incur an immediate negative
payoff of at least (1 − x1)I1. Subsequently, they make additional searches which add additional
negative payoffs. Overall, this argument implies that Ψ(x1) is negative, which is a contradiction.

Thus, It cannot be arbitrarily close to zero, which means there exists ζ > 0 such that
It > ζ ∀ t. Consequently in any non-trivial SMPE the project has to be finished in a finite
number of periods. This establishes part (a) of the Lemma.

Given that the project has to be finished in a finite number of periods, backward induction
can be applied. Namely, we assume that Ψ0 ≡ 0 and derive Ψ1 ≡ BΨ0. This allows us to find
all potential SMPE of the game if players could search for at most one period. Then we derive
Ψ2 ≡ BΨ1, which allows us to find all potential SMPE of the game if players could search for at
most two periods. We continue this process until T is reached and find all potential SMPE of the
game if players could search for at most T periods. This establishes part (b) of the Lemma and
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concludes the proof. �

Proof of Proposition 2

As proved in Lemma 3, the finite application of operator B represents the algorithm for solving
the Bellman equation. Let us start from the end period of search process. What will be the value
if players could only search for at most one period? Equation (7) transforms into

Ψ1(x) = max
I∈[0,x]

{J − Ij − xI}. (23)

When x is small the benefit of search is higher than the cost. In the unique SMPE both players
cumulatively search the whole island; that is, J = I+Ij−(1−α)IIj/x = x. Consequently, provided
x ≤

√
α, each player searches

I =
x

1 +
√
α
. (24)

Substituting (24) into (4) and (23) results in

Ψ1(x) = xV1(x) =
(
√
α− x)x

1 +
√
α

.

Now we analyze the situation when players plan to search for at most two periods. Equation
(7) in this case transforms into

Ψ2(x) = max
I∈[0,x]

{J − Ij − xI + δΨ1(x− J)}. (25)

The necessary condition for I to be optimal in the interior of [0, x], provided that search lasts for
two periods, is

∂J

∂I

(
1− δ

√
α− 2(x− J)

1 +
√
α

)
− x = 0. (26)

Note that ∂J
∂I > 0 for J ≤ x. This means when x is small the left hand side is positive and the

optimal solution is not interior. Consequently, in a two-period search path players search the
whole island in one period. To find the critical value χ1 for which searching the whole island in
one period stops being a dominant strategy, we use the condition that the corner solution x = J
coincides with the internal solution (26). From this we derive a unique solution

χ1 =
√
α

(
1− δ

√
α

1 +
√
α

)
.

This concludes the proof. �

Proof of Proposition 3

Construction of Ψ1 and V1

Let us start from the end of the search process. What will be the value if players could only
search for at most one period? Equation (7) transforms into

Ψ1(x) = max
I∈[0,x]

{min{x, I + Ij} − Ij − xI}. (27)
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It is evident that in the unique non-trivial SMPE the equilibrium I can be described in the
following way29:

I = x/2, if x ≤ 1.

If x ≤ 1, then in the SMPE players search the whole island, 2I = x. Consequently, the
solution of (27) is

Ψ1(x) = P1(x), if x ≤ u1 = 1; (28)

where u1 = 1 is the largest positive root of polynomial P1(x) = x(1− x)/2. For future reference
note that

P1(x) =
a1
2
(1− x)2 +

b1
2
(1− x) +

c1
2
, (29)

where
a1 = −1, b1 = 1, c1 = 0. (30)

Define the value for each player (if the players can search the island for at most k periods) as
Vk(x) ≡ Ψk(x)/x, for any x ≥ 0. From the above definition, it follows that

V1(x) = (1− x)/2, if x ≤ u1 = 1.

Construction of Ψ2 and V2

What will be the value if players can search the island for at most two periods? In general there
could be three possibilities, depending on the island size. The first possibility is that the players
search the whole island in just one period. Intuitively this happens for small values of x because
it is too costly to wait for another period when the island is very small. The second possibility
is that the players search the island for at most two periods. This happens for middle values of
x. Finally, players can find search to be too costly. When the initial island is large (costs are
very high), there is no non-trivial SMPE (mixed, asymmetric or trivial equilibria are the only
possibilities).

We have already considered the first possibility in the previous section. Now we analyze the
situation when players plan to search for at most two periods. The first step is to construct Ψ2(x).
Equation (7) in this case transforms into

Ψ2(x) = max
I∈[0,x]

{min{x, I + Ij} − Ij − xI + δΨ1 (max{0, x− I − Ij})}. (31)

The necessary condition for I to be optimal in the interior of [0, x], provided that search lasts for
two periods, is

(1− x)− δΨ′
1(x− 2I) = 0. (32)

In order to continue the search for the second period, the remaining island size has to satisfy

0 ≤ x− 2I ≤ u1. (33)

29Note that if x = 1, then any I ∈ [0, x/2] is optimal. We assume that players choose I = x/2 in this
case.
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The sufficient condition for I to be optimal in the interior of [0, x] is satisfied because

Ψ′′
1(x− 2I) = a1 < 0.

The way to proceed is to construct the equilibrium with the help of condition (32), and then show
that the derived equilibrium satisfies condition (33).

From expressions (32) and (28), it follows that

(1− x)− δ

(
1− 2(x− 2I)

2

)
= 0.

Consequently,

I =
2(δ − 1)x+ 2− δ

4δ
. (34)

Substituting (34) into equation (31), we obtain a spline of degree two on the interval [0, u2]:

Ψ2(x) =

{
Ψ1(x), if 0 ≤ x ≤ χ1,
P2(x), if χ1 < x ≤ u2;

(35)

where u2 > 0 is the largest positive root of polynomial

P2(x) =
a2
2
(1− x)2 +

b2
2
(1− x) +

c2
2
, (36)

with

a2 = −1, b2 =
1

2
, and c2 =

δ

4
. (37)

In order to find u2, we need to solve the quadratic equation P2(u2) = 0. It is easy to check
that

u2 = 1 +

√
4δ + 1− 1

4
. (38)

The point x = χ1 is the first knot of the spline. When x = χ1 players are indifferent between
searching the island for two periods or for just one period:

Ψ1(χ1) = Ψ2(χ1). (39)

From (29) and (36), we derive a unique solution

χ1 = 1− δ

2
. (40)

Note that condition (33) is satisfied for any x ∈ [χ1, u2]. Therefore, if the players can search
the island for at most two periods, the SSMPE is a spline of degree one on the interval [0, u2]:

I(x) =

{ x
2 , if x ≤ χ1,
2(δ−1)x+2−δ

4δ , if χ1 < x ≤ u2;

and the value function is

V2(x) =

{
V1(x), if x ≤ χ1,
P2(x)/x, if χ1 < x ≤ u2.
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We can describe the construction of Ψk and Vk now.

Construction of Ψk and Vk

What will be the value if players can search the whole island for at most k ≥ 3 periods? In general
there could be k+1 possibilities, depending on the island size x1. The players can plan to search
the island for at most 1, 2, ..., k periods in a non-trivial SMPE. It is also possible that there is no
non-trivial SMPE.

Let us construct Ψk(x). Equation (7) in this case transforms into

Ψk(x) = max
I∈[0,x]

{min{x, I + Ij} − Ij − xI + δΨk−1 (max{0, x− I − Ij})}. (41)

The necessary condition for I to be the optimal value in the interior of [0, x], provided that search
lasts for k periods, is

(1− x) = δΨ′
k−1(x− 2I). (42)

In order to continue search for the next period, the new value of x has to satisfy

χk−2 ≤ x− 2I ≤ uk−1, (43)

where χ0 = 0. The sufficient condition for I to be the optimal value in the interior of [0, x] is
satisfied if

Ψ′′
k−1(x− 2I) < 0. (44)

We will use condition (42) to find I, and then show that it satisfies conditions (43) and (44).
Note that if function Ψk−1(x) in (41) is a quadratic polynomial, then Ψk(x) = BΨk−1(x) has to
be a quadratic polynomial as well. Since P1(x) and P2(x) are quadratic polynomials by (29) and
(36), any Pk(x) can be represented in the following form:

Pk(x) =
ak
2
(1− x)2 +

bk
2
(1− x) +

ck
2
, k ≥ 1. (45)

From condition (42) and expression (45), it follows that

I = −(1− x)(1 + δak−1)

2δak−1
− bk−1

4ak−1
. (46)

Define the largest root of polynomial Pk(x) as uk, and that value of x such that players switch
from planning to search the area for k− 1 periods to planning to search the area for k periods as
knot χk−1:

Ψk−1(χk−1) = Ψk(χk−1). (47)

For the moment, let us assume that equation (47) has a unique solution. The uniqueness of the
solution will be proved below. Substituting (46) into equation (41), we obtain a spline of degree
two on the interval [0, uk]:

Ψk(x) =

{
Ψk−1(x), if 0 ≤ x ≤ χk−1,
Pk(x), if χk−1 < x ≤ uk;

(48)

where Pk(x) is defined in (45). Therefore, if players plan to search the island for at most k periods,
then I(x) is a spline of degree one on the interval [0, uk]:
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I(x) =



x
2 , if x ≤ χ1,

− (1−x)(1+δa1)
2δa1

− b1
4a1

, if χ1 < x ≤ χ2,
...

− (1−x)(1+δak−1)
2δak−1

− bk−1

4ak−1
, if χk−1 < x ≤ uk;

(49)

and the value function is

Vk(x) =

{
Vk−1(x), if 0 ≤ x ≤ χk−1,
Pk(x)/x, if χk−1 < x ≤ uk.

(50)

Let us now find ak, bk, and ck for any k ≥ 2. Using (41), (45) and (46), we get the following
system of difference equations:

ak = −1, bk = − bk−1

2ak−1
, ck = δ

(
ck−1 −

b2k−1

4ak−1

)
, k ≥ 2, (51)

where
a1 = −1, b1 = 1, c1 = 0. (52)

Derivation of ak, bk and ck

Let us now solve the system of difference equations (51). It is straightforward to derive

ak = −1 and bk =
1

2k−1
. (53)

Note that ak ̸= 0 and the system (51) is well defined.
The expression for ck in (51) can be simplified to

ck = δ(ck−1 + 1/4k−1). (54)

Introduce a new variable ek = ck4
k. Equation (54) transforms to

ek = 4δ(ek−1 + 1),

where e1 = 0. The solution to this linear difference equation is ek = 4δ−(4δ)k

1−4δ . Substitute ck =

ek/4
k to derive

ck =
(4δ)k − 4δ

(4δ − 1)4k
. (55)

Derivation of χk

To find χk, one needs to solve the quadratic equation Pk(χk) = Pk+1(χk), namely

ak(1− χk)
2 + bk(1− χk) + ck = ak+1(1− χk)

2 + bk+1(1− χk) + ck+1, k ≥ 1.

From equation (53), ak = ak+1 = −1; consequently,

χk = 1 +
ck+1 − ck
bk+1 − bk

.
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Substitute bk and ck from equations (53) and (55) to derive the following indifference points

χk = 1− 3δ + (4δ)k(δ − 1)

2k(4δ − 1)
. (56)

Note that the solution to the quadratic equation Pk(χk) = Pk+1(χk) is always unique.

Derivation of uk

To find uk, one needs to solve the quadratic equation Pk(uk) = 0, namely

ak(1− uk)
2 + bk(1− uk) + ck = 0, k ≥ 1.

Substituting ak = −1 from equation (53) and solving the above quadratic equation gives

uk = 1 +

√
b2k + 4ck − bk

2
. (57)

Note that with the help of (53) and (55), one can simplify:

b2k + 4ck =
(4δ)k − 1

4k−1(4δ − 1)
. (58)

Substitute equation (58) into equation (57) to get

uk = 1 +

√
1−(4δ)k

1−4δ − 1

2k
. (59)

Note that for the ease of exposition we present χd = ud in the statement of the Proposition.

Derivation of d

One way to find the maximum number of search periods is to write the condition that the largest
positive root of the quadratic polynomial Pk(x) coincides with the largest positive root of the
quadratic polynomial Pk+1(x). This condition gives a critical value of δ; for slightly larger values
of δ, there is an additional search period.

This means that k is the smallest integer such that Ψk(x) ≡ Ψk+1(x), or in other words
V (x) ≡ Vk(x). Specifically, when δ is at a critical value, k has to be an integer and is the solution
to the following equation:

uk(δ, n) = tk(δ, n). (60)

Substitute td and ud from equations (56) and (59) into equation (60) to get

1 +

√
1−(4δ)d

1−4δ − 1

2d
= 1− 3δ + (4δ)d(δ − 1)

2d(4δ − 1)
.

Simplify the above expression to√
1− (4δ)d

1− 4δ
− 1 = −3δ + (4δ)d(δ − 1)

(4δ − 1)
.
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Further simplifications give √
(4δ)d − 1

4δ − 1
=

((4δ)d − 1)(1− δ)

(4δ − 1)
,

and √
(4δ)d − 1

4δ − 1
(1− δ) = 1. (61)

Square both sides of equation (61) to derive the maximum number of search periods:30

d =

⌈
ln ((δ2 + 2δ)/(1− δ)2)

ln (4δ)

⌉
. (62)

Conditions (43) and (44) are satisfied

Define that part of x which player i does not search in the current period by y = x − I and the
part of x no player searches in the current period by z = x− (I + Ij) = y − Ij .

Next, show that condition (43) is satisfied; that is, tk−2 ≤ z ≤ uk−1. Let us prove the first
part z ≤ uk−1 by contradiction, assuming that z > uk−1. Refer to equation (41), which is written
below:

Ψk(x) = max
I∈[0,x]

{min{x, I + Ij} − Ij − xI + δΨk−1 (max{0, x− I − Ij})}.

Given x ≥ z > uk−1 ≥ · · · ≥ u2 ≥ u1 = 1 and I + Ij ≤ x, it follows that the first term
min{x, I + Ij} − Ij − xI ≤ (1 − x)I has to be non-positive. If z > uk−1, then the second term
δΨk−1(z) is negative. That means the whole expression on the right of equation (41) has to be
negative. Obviously that could not be an optimal choice for a player because by choosing y = x,
that is, by not searching, a player can get the value of zero. Consequently, there is a contradiction,
and condition z ≤ uk−1 is proved.

Now let us show that χk−2 ≤ z. From equations (46), (53) and (55), it follows that z(x) =
1−21−k− 1−x

δ . It is easy to see that z(x) is a monotonically increasing function in x. Consequently,
it is sufficient to prove the above condition for x = χk−1. Substituting values from (56) and
simplifying gives

3δ + (4δ)k−1(δ − 1)

δ(4δ − 1)
≤ 1 + 2δ + 2(4δ)k−2(δ − 1)

4δ − 1
.

Further simplifications result in (4δ)k−1 ≥ 4δ, which is satisfied for any k > 2.
Finally, let us show that condition (44) is satisfied; that is, Ψ′′

k−1(z) < 0. From equations (45),
(48) and (53), it follows that Ψ′′

k−1(z) = ak−1 = −1. This concludes the proof. �

Proof of Corollary 1

First, I(x) presented in Proposition 3 is a piece-wise linear function. Second, let us prove that
I(x) is not a continuous function. Given that I(x) is piece-wise linear, discontinuities are only

30Note that when δ = 1/4 both numerator and denominator in d contain ln (4δ) term, which means d is
not well defined. The interpretation of this expression for d when δ = 1/4 is its limit as δ → 1/4.
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possible in the knots of the spline. Substitute x = χs into (49), when the project is planned to
be finished in s ≥ 2 periods, to derive

I(χs) =
2− 2δ + δ/2s−2 − 2(1− δ)χs

4δ
. (63)

Next, substitute x = χs into (49), when the project is planned to be finished in s+ 1 periods, to
derive

I(χs) =
2− 2δ + δ/2s−1 − 2(1− δ)χs

4δ
. (64)

The difference between the expressions in (63) and (64) is ∆I(χs) = 1/2s+1 > 0.
Third, let us find the slope of I(x). If the project is finished in one period then the slope

is positive, I ′(x) = 1
2 , otherwise it is negative, I ′(x) = δ−1

2δ . This proves quasiconcavity and
concludes the proof. �

Proof of Corollary 2

First, V (x) presented in Proposition 3 has to be continuous. Remember that knot χs is defined
as an area size for which the duopolists are indifferent between planning to search the area for s
periods or for s+ 1 periods.

Second, to show that the value function is monotonically decreasing we need to show that
∀ s ≥ 2 the following inequality holds:

V ′
s (x) =

(
Ps(x)

x

)′
= as −

as + bs + cs
x2

< 0. (65)

Substitution of as = −1 transforms (65) to

bs + cs + x2 > 1.

For a given s, the left hand side is increasing in x, which means it is sufficient to prove the
inequality for x = χs−1. Substitute bs, cs and χs−1 from (53),(54) and (56) to derive

1

2s−1
+

(
(4δ)s−1 − 1

4s−1(4δ − 1)

)
δ +

(
1− 3δ + (4δ)s−1(δ − 1)

2s−1(4δ − 1)

)2

> 1. (66)

Let us prove inequality (66) separately for s ∈ [2, 3] and for s ∈ [4, d]. When s = 2, the
inequality transforms to 2−3δ+ δ2 > 0, which is always satisfied for δ < 1. Similarly when s = 3,
the inequality transforms to 4 + 25δ − 28δ2 + (3δ − 4δ2)2 > 0, which is also always satisfied for
δ < 1.

From (61) when d ≥ 4, it is the case that δ > 1/2. Simplify inequality (66) to

(2s−1−1)

(
2
(4δ)s−1 − 1

(4δ − 1)
− 1

)
(1−δ)+

(
(4δ)s−1 − 1

(4δ − 1)
+ 1− 2s−1

)
δ+

(
((4δ)s−1 − 1)(δ − 1)

4δ − 1

)2

> 0.

The first and the third terms are positive for s ≥ 4. The second term is increasing in δ. Substitute
δ = 1/2 to derive(

(4δ)s−1 − 1

(4δ − 1)
+ 1− 2s−1

)
δ = (1 + 2 + · · ·+ 2s−2 + 1− 2s−1)δ = 0.
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This proves the Corollary. �

Proof of Proposition 4

Introduce x̃ = (x− γ)/(1− γ), Ĩ = I/(1− γ), Ĩj = Ij/(1− γ) and J̃ = J/(1− γ) and substitute
them in problem (14). That results in

Ψ̄(x̃) = max
Ĩ∈[0,x̃]

{min{(1− γ)(x̃− Ĩj − xĨ), (1− γ)2(1− x̃)Ĩ}+ δΨ̄(x̃− J̃)}, (67)

where Ψ̄(x̃) = Ψ(x). Substitute ¯̄Ψ(x̃) = Ψ̄(x̃)/(1 − γ)2 and ¯̄Ψ(x̃ − J̃) = Ψ̄(x̃ − J̃)/(1 − γ)2 into
equation (67) to derive

¯̄Ψ(x̃) = max
Ĩ∈[0,x̃]

{J̃ − Ĩj − x̃Ĩ + δ ¯̄Ψ(x̃− J̃)},

which coincide with problem (7). It follows that the substitutions x′ = x−γ
1−γ and Ψ′ = Ψ

(1−γ)2
allow

to transform problem (14) into problem (7). This concludes the proof. �

Proof of Proposition 5

Let us generalize the argument presented in Proposition 1 for multiple islands. Introduce the
following operator B̄ defined by

(B̄V )(X,p) = max{
I
(k)
i ∈[0,x(k)]

}n

k=1


n∑

k=1

−I
(k)
i +

p(k)
(
J (k) − I

(k)
j

)
x(k)

 (68)

+ δ

(
1−

n∑
k=1

p(k)J (k)

x(k)

)
V (X′,p′)

}
.

where transitions X → X′ and p → p′ are specified by (16) and (17) and the solution has to

satisfy I(k) = I
(k)
j and J (k) = I(k) + I

(k)
j − I(k)I

(k)
j /x(k) for k = 1, . . . , n. By the contraction

property of the operator defined in equation (68), V = lims→∞ Vs, where Vs ≡ B̄Vs−1 ≡ B̄sV0

and V0 ≡ 0. The remainder of the proof follows by induction. V0 ≡ 0, so an induction argument
for s = 0 is satisfied. Assume that Vs ≡ 0, and let us show that Vs+1 ≡ 0. Substituting Vs ≡ 0
into the right hand side of equation (68), cancels out the continuation term on the right, yielding

Vs+1(x
(k)) = B̄Vs(x

(k)) ≡ max
{I(k)∈[0,x(k)]}n

k=1

{
n∑

k=1

(
−I(k) +

p(k)I(k)

x(k)

(
1−

I
(k)
j

x(k)

))}
, (69)

where the solution has to satisfy I(k) = I
(k)
j for k = 1, . . . , n. The optimization problem (69) is

separable in k, which means it is sufficient to solve each island’s problem independently.
For each island k consider separately when p(k) ≥ x(k) and when p(k) < x(k). When p(k) ≥ x(k)

if the search by the other player I
(k)
j < x(k) − (x(k))2/p(k), it is a dominant strategy for player i

to choose I(k) = x(k). If, on the other hand, search by the other player I
(k)
j > x(k) − (x(k))2/p(k),

it is a dominant strategy for player i to opt for I(k) = 0. Moreover, if search by the other player

I
(k)
j = x(k) − (x(k))2/p(k), then player i is indifferent among all I(k) ∈ [0, x(k)]. There is a unique

symmetric equilibrium where each player searches I(k)(x(k)) = x(k) − (x(k))2/p(k) and the value
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each receives is zero; that is, Vs+1 ≡ 0. Taking the limit gives V (x) = lims→∞ Vs(x) ≡ 0.
Applying similar logics when p(k) < x(k) gives the result that each player searches I(k) = 0.

This proves the Proposition. �

Proof of Proposition 6

Suppose (1) is not satisfied. This means that an island with a lower attractiveness is searched
earlier than a more attractive island in equilibrium. If this were true, there would be a one-shot
profitable deviation for either player, which is a contradiction.

Let us generalize the argument presented in Lemma 3 for multiple islands. Suppose (2a) is not

satisfied. First, if I
(k)
t = 0 ∀ k for some t = t̂, the Markovian assumption implies search remains

zero for ∀ t > t̂. Hence, there are finitely many search periods. Assuming that the game lasts an
infinite number of periods, this means that search in some periods will involve arbitrarily small

amounts, i.e. for ∀ ε0 > 0 ∃ ε ∈ (0, ε0) and ∃ t ∈ N such that
∑n

k=1 I
(k)
t = ε. It also means that

there will be an infinite number of such periods.
Without loss of generality assume that n̄ islands are not wholly searched at t, and x̃ is the

smallest unsearched area of such islands. Then ε can be chosen such that ε ≪ x̃, and from (18) it

follows V (X,p) =
∑n̄

k=1

I(k)(p(k)−x(k))
x(k) + δ

(
1−

∑n̄
m=1

p(m)J(m)

x(m)

)
V (X′,p′). This can be rewritten

as

V (X′,p′) =
V (X,p)−

∑n̄
k=1

I(k)(p(k)−x(k))
x(k)

δ
(
1−

∑n̄
m=1

p(m)J(m)

x(m)

) =
V (X, p) +O(ε)

δ
. (70)

Let us prove that in this case V (X,p) must be arbitrarily close to zero. Assume on the
contrary that V (X,p) is equal to some positive value that is not infinitely small. By iterating
equation (70) a large number of times it is possible to show that ∃ X̂ = (x̂(1), . . . , x̂(n)) and
p̂ = (p̂(1), . . . , p̂(n)) such that x̂(k) ∈

(
0, x(k)

)
∀ k and V (X̂, p̂) can be larger than any positive

value. However, by construction V (X̂, p̂) ≤ 1. We have reached a contradiction, proving that
V (X,p) must be arbitrarily close to zero.

For values of X and p where p(k) > x(k) at least for some k, V (X,p) can not be arbitrary
close to zero, because each player will have incentive to deviate by choosing I(k) = x(k)−ε+O(ε2)
and generating V (X) = p(k) − x(k) +O(ε) > 0.

For values of X and p where p(k) = x(k) for some k and p(s) ≤ x(s) ∀ s ̸= k a similar argument
applies; in the first period a player has an incentive to deviate by making a positive contribution,
for example he could deviate to I(k) = x(k)/2. In this case, V (X,p) ≥ δV (X′,p′) +O(ε), where
X′ satisfy the condition proved in the previous paragraph; namely, new values of p(k) and x(k)

are such that p(k) > x(k). Given that in the previous paragraph it is proved that V (X′,p′) is not
arbitrarily close to zero, V (X,p) is also not arbitrarily close to zero.

When p(k) < x(k) ∀ k, a slightly different proof is used. For a givenX and p, each player makes
a positive search Υ =

∑n
k=1 I

(k) > 0 in the first period. Assuming that the game lasts an infinite
number of periods, search has to take arbitrarily small values, i.e. for ∀ ε0 > 0 ∃ ε ∈ (0, ε0)

and ∃ t ∈ N , such that
∑n

k=1 I
(k)
t = ε. It also means that there will be an infinite number of

such periods. As shown above, in this case V (X,p) is arbitrarily small. However, in the first
period players make a positive search Υ, which means they will incur an immediate negative

payoff of at least Υmaxk

{
p(k)−x(k)

x(k)

}
. Subsequently, they make additional searches, which add

additional negative payoffs. Overall, this argument implies that V (X,p) is negative, which is a
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contradiction. Note that, if in the process, the condition p(k) < x(k) ∀ k ceases being satisfied,
then ∃ k such that p(k) ≥ x(k); we have considered this case earlier.

Thus,
∑n

k=1 I
(k)
t cannot be arbitrarily close to zero, which means there exists ζ > 0 such that∑n

k=1 I
(k)
t > ζ ∀ t. Consequently in any non-trivial SMPE the project has to be finished in a

finite number of periods. This establishes part (2a) of the Proposition.
The proof of part (2b) of the Proposition closely follows the proof of part (b) of Lemma 3.

This concludes the proof. �

An example of asymmetric equilibria

Assume that there is only one island and the players can perfectly coordinate (α = 1). Consider
the following two-period game. Player i = 1, 2 can search the island of size x1 = 0.9 in the two
potential periods, t = 1, 2, in order to find a treasure of value 1. Payoffs are discounted at a
common factor δ = 0.75.

Let us solve this problem by backward induction. Consider the second period subgame in
which the treasure was not found in the first period and the unsearched area of the island is
x ≤ x1. Provided there is no duplication, each player has a dominant strategy to search as much
as possible in the second period. Therefore in any SPE, I1 + I2 = x. Consider, for instance,
an asymmetric equilibrium with player 1 searching β1 = 2/3 of the remaining unsearched area
and player 2 searching the remainder, so that β2 = 1/3. The one-period value for player i in the
subgame with the unsearched area of x is

Vi(x) = βi(1− x).

Now consider the first period. Note that if player i searches Ĩi in the first period, his expected
payoff from two-period game is

Ĩi/x1 − Ĩi + δ(1− (Ĩ1 + Ĩ2)/x1)Vi(x1 − Ĩ1 − Ĩ2),

where player i incurs search cost of Ĩi, gets immediate expected payoff of Ĩi/x1, and anticipates
the expected payoff of δ(1 − (Ĩ1 + Ĩ2)/x1)Vi(x1 − Ĩ1 − Ĩ2) in the second period. The first-order
conditions with respect to Ĩi are

Ĩ1 + Ĩ2 =
1− x1
2δβi

+ x1 − 0.5.

In the case of the first player, the preferred combined search in the first period is Ĩ1+ Ĩ2 = 0.5.
In the case of the second player, the preferred combined search in the first period is Ĩ1+ Ĩ2 = 0.6.
Consequently, there is a unique asymmetric SPE that involves only the second player searching
Ĩ2 = 0.6 in the first period and both players searching in the second period. The intuition is that
as the second player expects a smaller payoff in the second period, he is willing to search more in
the first period. The values in the two-period game with the island size of x1 = 0.9 for players 1
and 2 are Ṽ1(x1) =

7
60 and Ṽ2(x1) =

1
8 , respectively. �
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