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Abstract

This paper assesses the predictive gains of the pooling method in yield curve
prediction. We consider three individual yield curve prediction models: the dy-
namic Nelson-Siegel model (DNS) and the arbitrage-free Nelson-Siegel model in
addition to the random walk (RW) model as a benchmark. Despite the popularity
of these three frameworks, none of them dominates the others across all maturi-
ties and forecast horizons. This fact indicates that those models are potentially
misspecified. We investigate whether combining the possibly misspecified models
in a linear form helps improve the predictive accuracy. To do this, we evaluate the
out-of-sample forecasts of the pooled models in comparison with the individual
models. In terms of density prediction, the pooled model of the DNS and RW
models consistently outperforms those individual models regardless of maturities
and forecast horizons. Our findings strongly suggest that one needs to try the
pooling method rather than choosing one of the alternative models.
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1 Introduction

Forecasting the yield curve is extremely important for bond portfolio risk management,

monetary policy, business cycle analysis, and so forth. In the previous literature, three

classes of yield curve prediction models have been widely used. One is arbitrage-free

affine term structure models, which take a theoretical bond pricing approach1. This

approach provides many economically interpretable outcomes such as term premium

and term structure of real interest rates. Despite its flexibility and microfoundation,

this class of models is known to be difficult to estimate because of the nonlinearity and

irregular likelihood surface.

Another is a purely statistical approach, which is a dynamic version of the Nelson-

Siegel (DNS) model2. Since this modeling approach is parsimonious but flexible for

fitting the yield curve, overall its forecasting performance is better than the theoret-

ical approach. The other is the random-walk model (RW), and it is often used as a

benchmark in forecasting ability comparison.

Interestingly, beating the RW is a challenging task although the DNS or the arbitrage

free term structure model can be better at some particular maturities and forecast

horizons. None of the three alternative models uniformly outperforms at all maturities

and forecast horizons. For example, Diebold and Li (2006) find that the three-factor

DNS outperforms the RW at 1-month-ahead horizon for short maturities, but for long-

term bond yields the RW dominates the DNS. Zantedeschi et al. (2011) confirm that

the RW forecasts better in the short run whereas at three- and six-step-ahead forecast

horizons the predictions from their DNS with time-varying factorloadings are much

improved. Moench (2008) finds that the arbitrage free affine term structure model

forecasts better than the RW at he six-month maturity only. Using an affine term

structure model, Carrieroa and Giacomini (2011) produce one-step-ahead forecasts and

find positive prediction gains against the RW at intermediate and long maturities, not

at short maturities.

1For example, Moench (2008), Christensen, Diebold, and Rudebusch (2011), Chib and Kang (2013),
Almeida and Vicenteb (2008), and Carrieroa and Giacomini (2011)

2For example, Diebold and Li (2006), De Pooter (2007), and Zantedeschi, Damien, and Polson (2011)

1



These mixed results for out-of-sample prediction comparison strongly indicate that

all the prediction models are potentially somewhat misspecified. Our goal of this paper

is to investigate whether it is possible to improve the out-of-sample prediction perfor-

mance when all alternative models are potentially misspecified. In a Bayesian context a

standard way to consider the model uncertainty is using the Bayesian model-averaging

method based on the marginal likelihood computation. However, the Bayesian model

averaging typically gives a weight of nearly one on the DNS excluding other models.

As an alternative way to consider the model misspecifications we take the pooling

method recently suggested by Geweke and Amisano (2012), Geweke and Amisano (2011)

and Waggoner and Zha (2012). The key idea of their approach is to construct the one-

step ahead predictive density as a linear combination of the predictive densities obtained

from each of alternative prediction models. In this paper the three individual yield

curve prediction models and pooled models of two or three of the individual models are

compared in terms of out-of-sample predictive accuracy. When considering the pooling

approach, the weights are equally given, to be estimated as constant parameters, or follow

the first-order Markov-switching process. Using these pooled models we forecast the

monthly yields with eight different maturities over the forecast horizons of one through

twelve months, and conduct model comparison analysis using the root mean squared

error and the posterior predictive criterion.

According to our empirical results based on 108 out-of-sample periods, the pooled

model of the DNS and RW with equal model weights dominates all individual models

across all maturities and forecast horizons in terms of the bond yield density forecasting.

Further, the predictive gains from using the pooling method are remarkable. In contrast,

in the point forecasting, we do not find a strong evidence that the pooling method can

help improve the predictive accuracy. Our findings strongly indicate that for density

prediction the pooling method is worth trying, so one should examine the pooled models

of the individual models in addition to choosing one of them.

The rest of the paper is organized as follows. Section 2 briefly describes our pooling

methods, and Section 3 specifies all competing models including the three individual

prediction models and the pooled models. In Section 4 we lay out our Bayesian Markov
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chain Monte Carlo (MCMC) algorithm for estimation. Sections 5 and 6 provide the

empirical results and discuss their implications. Finally, Section 7 concludes the paper.

2 Pooling Method

In this section we illustrate the pooling method using an example of two prediction mod-

els,M1 andM2. Let Θ1 and Θ2 be the set of parameters inM1 andM2, respectively.

The set of maturities is {τi}Ni=1, the τ -period bond yield at time t is denoted by yt(τ),

and the vector of yields with N different maturities at time t is

yt = (yt(τ1), yt(τ2), .., yt(τN))′.

We let Yt = {yi}ti=1 denote the observed yield curve data up to time t. Then Geweke

and Amisano (2011) study predictive densities of the form

w1 × p(yt|Yt−1,Θ1,M1) + (1− w1)× p(yt|Yt−1,Θ2,M2) (2.1)

with w1 ∈ [0, 1] is the model weight on M1.

Waggoner and Zha (2012) extend Geweke and Amisano (2011)’s approach and allow

the model weights to vary over time. They replace w1 in equation (2.1) by w1,st ∈ [0, 1]

where st takes either 1 or 2 following a first-order two-state Markov process with constant

transition probabilities

qij = Pr [st = j|st−1 = i] , i, j = 1, 2

By doing this they consider the case that the relative importance of each of the prediction

models can change over time. The resulting predictive density conditioned on the regime

st is given by

w1,st × p(yt|Yt−1,Θ1,M1) + (1− w1,st)× p(yt|Yt−1,Θ2,M2)

On letting the model specific parameters Θ = {Θ1, Θ2}, transition probabilities

Q = {q11, q22}, and the regime-dependent model weight w = {w1,1, w1,2} the likelihood

can be constructed as

log p(YT |Θ, Q, w) =
T∑
t=1

log p(yt|Yt−1,Θ, Q, w)
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where the regime st is integrated out because it is never observed by econometricians.

For more details for the likelihood computation, refer to A.

It should be noted that although we follow Geweke and Amisano (2012) and Wag-

goner and Zha (2012)’s methodological approach our study differs from theirs in several

dimensions. First, we concentrate on yield curve forecasting while they forecast macroe-

conomic variables such as the GDP growth rate and inflation. Second, in our work

the model specific parameters, the model weights and the transition probabilities are

estimated simultaneously, not sequentially. Third, most importantly, both short- and

long-term forecasts are produced and used for model comparison whereas they assess

the predictive performance of pooled models based on the log predictive score, which is

a good measurement of one-step-ahead predictive accuracy.

3 Models

In this section we briefly discuss the three individual yield curve prediction models which

have been commonly used for yield curve prediction. Then, we introduce our pooled

models as alternative prediction models.

3.1 Individual Yield Curve Prediction Models

3.1.1 Dynamic Nelson-Siegel Model

We begin by describing the three-factor dynamic Nelson-Siegel model (DNS, Diebold

and Li (2006)). In the DNS model, the bond yields are specified as a linear function of

the vector of three exogenous latent factors xt

yt|xt,ΣNS ∼ N (Λxt,ΣNS) (3.1)

where N (., .) denotes the multivariate normal distribution, the measurement error vari-

ances ΣNS is a diagonal matrix, λ is a decay parameter,

Λ =


1 1−e−τ1λ

τ1λ
1−e−τ1λ
τ1λ

− e−τ1λ

1 1−e−τ2λ
τ2λ

1−e−τ2λ
τ2λ

− e−τ2λ
...

...
...

1 1−e−τNλ
τNλ

1−e−τNλ
τNλ

− e−τNλ

 , (3.2)
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and xt =
(

xLt xSt xCt
)′
. (3.3)

The vector of the dynamic factors xt is assumed to follow the first-order stationary

vector autoregressive (VAR) process,

xt|xt−1, κ, φ,ΩNS ∼ N (κ + φxt−1,ΩNS) . (3.4)

For stationarity, the absolute of all eigen values of φ : 3×3 is constrained to be less than

1, and x0 is assumed to be generated from the unconditional distribution of xt. Due to

the functional form of the factorloadings Λ, the latent dynamic factors, xLt , xSt and xCt

are identified and interpreted as level, slope, and curvature effects, respectively. The

coefficient λ, referred to the decay parameter, determines the exponential decay rate of

the factor loadings and it is fixed at 0.0607 like in Diebold and Li (2006).

Then, the set of the parameters to be estimated in the DNS model is

ΘNS = {κ, φ,ΩNS = VNSΓNSVNS,ΣNS}

where VNS : 3× 3 and ΓNS : 3× 3 are the factor shock volatility and correlation matrix,

respectively.

Finally, as the equations (3.1) and (3.4) are a standard state-space representation,

the resulting conditional density of yt at each time point

p(yt|Yt−1,ΘNS,MNS) (3.5)

can be easily obtained by the usual Kalman filtering procedure.

3.1.2 Arbitrage-free Nelson-Siegel Model

Bond Prices Arbitrage-free Nelson-Siegel Model (AFNS) model is a theoretical bond

pricing approach based on a partial equilibrium while the DNS model is a purely statis-

tical approach. Satisfying the arbitrage-free condition, the bond prices are endogenously

determined by economic agents who know the model parameters.

Let Pt(τ) denote the price of the bond at time t that matures in period (t + τ).

Following Duffie and Kan (1996), we assume that Pt(τ) is an exponential affine function

of the vector of three-dimensional factors ft taking the form

Pt(τ) = exp(−τyt(τ)) (3.6)
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where yt(τ) is the continuously compounded yield given by

yt(τ) = − logPt(τ)

τ
= a(τ) + b(τ)′ft

and a(τ) is a scalar and b(τ) is a 3× 1 vector, both depending on τ . These coefficients

are endogenously determined by the no-arbitrage condition given certain assumptions

about the dynamic evolution of the factors and the stochastic discount factor.

In order to impose the no-arbitrage condition

Pt(τ) = E[Mt,t+1Pt+1(τ − 1)|ft]

given the stochastic discount factor (SDF), Mt,t+1, we solve risk-neutral pricing equation

for these coefficients. To do this, we should specify the factor process and the (SDF).

The distribution of ft, conditioned on ft−1, is determined by a Gaussian mean-reverting

first-order autoregression

ft = Gft−1 + ηt, ηt ∼ N (0,ΩAF ) (3.7)

where G : 3×3 is VAR coefficients. In the sequel, we will express ηt in terms of a vector

of i.i.d. standard normal variables ωt as ηt = Lωt where L is the lower-triangular

Cholesky decomposition of ΩAF .

We complete our modeling by assuming that the SDF Mt,t+1 that converts a time

(t + 1) payoff into a payoff at time t is given by

Mt,t+1 = exp

(
−rt −

1

2
γ ′tγt − γ ′tωt+1

)
(3.8)

where rt is the short-rate, γt is the vector of time-varying market prices of factor risks

and ωt+1 is the i.i.d. vector of factor shocks at time t + 1. We suppose that the short

rate and the market price of factor risk are both affine in the factors

rt = δ + β′ft, (3.9)

γt = γ̄ + Φft (3.10)

, respectively.
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Given the assumptions above, we find the solutions for a(τ) and b(τ) in terms of the

structural parameters by using the method of undetermined coefficients. Incorporating

the assumptions for the factor and SDF process into the risk-neutral pricing formula

yields the following recursive system for the unknown functions

a(τ) = δ/τ + a(τ − 1) − b(τ − 1)′Lγ̄ − τ

2
b(τ − 1)′ΩAF b(τ − 1) (3.11)

b(τ) = β/τ + (G− LΦ)′b(τ − 1)

where GQ = G−LΦ and τ runs over the positive integers. These recursions are initialized

by setting a(0) = 0 and b(0) = 03×1.

Econometric Model Now we express the AFNS model into an econometric model

for estimation. First of all, we let a and b be the corresponding intercept and factor

loadings for yt obtained from the recursive equations in (3.11).

a =
(
a(τ1) a(τ2) · · · a(τN)

)′
: N × 1

b =
(
b(τ1) b(τ2) · · · b(τN)

)′
: N × 3 (3.12)

For computational convenience, we follow Bansal and Zhou (2002) and Chib and Kang

(2013), and assume that three basis bonds (the three-month, three-year, and ten-year)

are observed without errors. These three maturities are the first, fifth, and eighth

maturities in our data set. This means that there is a one-to-one mapping between the

three latent factors and basis yields such as

yBt = aB + bBft

or ft = (bB)−1 ×
(
yBt − aB

)
where

yBt =
(
y(τ1) y(τ5) y(τ8)

)′
,

aB =
(
a(τ1) a(τ5) a(τ8)

)′
: 3× 1,

and bB =
(
b(τ1) b(τ5) b(τ8)

)′
: 3× 3.
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Let aNB and bNB denote the intercept term and factorloadings corresponding to the

non-basis yields. The non-basis yields, denoted by yNBt , are observed with errors,

yNBt |aNB,bNB, ft ∼ N (aNB + bNBft,ΣAF ).

where ΣAF : 5× 5 is a diagonal matrix.

Identifying Restrictions For factor identification we impose two restrictions. First

of all, the matrix GQ has the form

GQ =

 1 0 0
0 exp(−gQ) gQ exp(−gQ)
0 0 exp(−gQ)

 . (3.13)

Secondly, the vector β is constrained to be

β = (1, 1, 0, )′.

As proved by Niu and Zeng (2012), due to these restrictions, b in equation (3.12) reduces

to exactly the form of the dynamic Nelson-Siegel factorloadings Λ. Therefore, the factors

ft are also identified as the level, slope, and curvature effects as in the DNS model.

Unlike in the DNS model, however, the structural parameters in the AFNS model

determining the intercept term, factorloadings, factor persistence, and factor volatilities

are jointly estimated. Meanwhile, in the DNS model, the intercept term and factorload-

ings are fixed, and ΘNS consists of the parameters in the factor process and measurement

error variances.

Suppose that VAF : 3 × 3 is the factor shock volatility and ΓAF : 3 × 3 is the factor

shock correlation matrix. In addition, following Dai, Singleton, and Yang (2007) we fix

δ at the sample mean of the short rate because the short rate is highly persistent and

δ tends to be estimated very inefficiently. After all, the set of parameters in the AFNS

model to be estimated is

ΘAF = {G, gQ,ΩAF = VAFΓAFVAF ,ΣAF}.

The resulting conditional density of yt is obtained as

p(yt|Yt−1,ΘAF ,MAF ) = p(yNBt |yBt ,ΘAF ,MAF )× p(yBt |yBt−1,ΘAF ,MAF ) (3.14)
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= N (yNBt |aNB + bNBft,ΣAF )×N (ft|Gft−1,ΩAF )× |b−1B |

where ft = (bB)−1×
(
yBt − aB

)
, and N (x|m,V ) denotes the multivariate normal density

of x with mean m and variance-covariance V .

3.1.3 Random-walk Model

The third individual prediction model contained in our pool is the random-walk,

yt|yt−1,ΣRW ∼ N (yt−1,ΣRW ) (3.15)

where ΘRW = ΣRW is an N×N diagonal matrix. The conditional density of yt is simply

p(yt|Yt−1,ΘRW ,MRW ) = N (yt|yt−1,ΣRW ). (3.16)

As demonstrated by Altavilla, Giacomini, and Ragusa (2014) and Diebold and Li (2006),

outperforming the random walk in terms of out-of-sample yield curve forecasting is quite

challenging, and it is often used as a benchmark in prediction ability comparison. For

this reason, we include the random-walk in our pool.

3.2 Pooled Models

Diebold and Li (2006) show that overall DNS produces better forecast accuracy in out-

of-sample prediction compared to Duffie (2002)’s best essentially affine model although

the RW forecasts better at short forecast horizons. Then the Bayesian model-averaging

method based on the Bayes factor would yield nearly one weight on the DNS model

excluding the AFNS and RW models. Nevertheless, all those prediction models have

been commonly used for forecasting the term structure of interest rates, and none of

them consistently outperforms at all maturities and forecast horizons. One potential

reason is that the alternative models are somewhat misspecified.

Given the potential model misspecification of the alternative models we investigate

whether combining the multiple models in a linear form helps improve the predictive

accuracy. Table 1 presents 15 competing pooled models with various combinations.

Basically, we consider the individual models. Also the linear combinations of two and

three of the alternatives are used for prediction. The model weights can be either
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Table 1: List of model combinations

DNS AFNS RW
Single
DNS © × ×
AFNS × © ×
RW × × ©
Constant weight
NS-AF-Const © © ×
NS-RW-Const © × ©
AF-RW-Const × © ©
NS-AF–RW-Const © © ©
NS-AF -Equal © © ×
NS-RW-Equal © × ©
AF-RW-Equal × © ©
NS-AF-RW-Equal © © ©
Markov-switching weight
NS-AF-MS © © ×
NS-RW-MS © × ©
AF-RW-MS × © ©
NS-AF-RW-MS © © ©

Note: © indicates the inclusion of the individual model into the pool.

constant or time-varying. For the pooled models with constant weights, the weights are

to be estimated or equally given. For instance, the NS-AF-RW-Const is the pooled model

of the DNS, AFNS and the random-walk with a constant weight. The NS-AF-RW-MS

is the pooled model with Markov regime-switching weights, in which the model weights

vary over time according to the Markov process. Meanwhile, in NS-AF-RW-Equal each

of the model weights is fixed at 1/3.

4 Posterior Simulation

This section discusses the posterior sampling scheme for the most general model among

the competing models, NS-AF-RW-MS model. The other models can be estimated as

a special case of NS-AF-RW-MS model. In the Bayesian context our pooled model

with Markov regime-switching weights is the joint prior distribution of the yield curves
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(Y = {yt}Tt=1), the regime indicators (S = {st}Tt=1), continuous latent variables (X =

{xt}t=1,2,..,T and F = {ft}t=1,2,..,T )), and the model parameters (ψ= {ΘNS, ΘAF , ΘRW ,

Q, w}). Given the joint density, our objective is to simulated the posterior distribution

of (ψ,X,F,S) conditioned on the observed yield curves Y. Its density has the form

π (ψ,X,F,S|Y) ∝ f (Y|ψ,X,F,S)× f (X,F|ψ)× p (S|ψ)× π(ψ) (4.1)

where π (ψ) is the prior density of the parameters, p (S|ψ) is the prior density func-

tion for regime-indicators given the parameters and it is specified as the discrete two-

state Markov switching process. f (X,F|S,ψ) is the prior density of the factors and

f (Y|ψ,X,F,S) is the joint conditional density of the observed data.

4.1 Prior

Our prior for (ΘNS,ΘAF ) which we give in the paper is set up to reflect the apriori belief

that the yield curve is gently upward sloping and concave on average. Particulary, the

prior of ΘAF should be chosen very carefully because the bond yields are highly nonlinear

to the parameters and the likelihood surface of the AFNS tends to be irregular. The

irregularity of the posterior surface can be more serious or mitigated depending on the

choice of the prior. We use the prior in the work of Chib and Kang (2016). They arrive

at the prior by prior simulation technique, sampling parameters from the assumed prior,

then sampling the data given the parameters, and then repeating this process many

times until the mean of the resulting prior-implied unconditional distribution of yield

curve is mildly upward sloping and concave. As Chib and Ergashev (2009) and Chib and

Kang (2016) show, this simulation-based prior can smooth out the many local modes of

the likelihood surface.

In addition, we assume that φ and G are diagonal since this restriction does not

only helps improve the predictive accuracy, but also reduces the computational burden

(Christensen et al. (2011)). Table 2 summarizes our prior.

For regime identification, we impose a restriction that the weight on the DNS model

MNS , denoted by wNS,st , should be higher in regime 2 than in regime 1

0 < wNS,st=1 < wNS,st=2 < 1 and 0 < wNS,st + wAF,,st < 1

11



Table 2: Prior

Parameter Density Mean S.D.
1200× κ Normal (0.2, -0.1, -0.1)’ (0.01, 0.01, 0.01)’
diag(φ) Normal (0.9, 0.9, 0.9)’ (0.05, 0.05, 0.05)’
1200×diag(VNS) Inverse Gamma 1.000 0.200
ρNS,ij (i 6= j, i, j = 1, 2, 3) Uniform 0.000 0.580
1.4× 104 × diag(ΣNS) Inverse Gamma 2.000 0.300

(a) DNS

Parameter Density Mean S.D.
γ̄ Normal (-0.15, -0.07, 0)’ (0.01, 0.01, 0.01)’
gQ Normal 0.067 0.031
diag(G) Normal (0.9, 0.9, 0.9)’ (0.05, 0.05, 0.05)’
104×diag(VAF ) Inverse Gamma (2, 2.5, 5)’ (0.25, 0.25, 0.25)’
ρAF,ij (i 6= j, i, j = 1, 2, 3) Uniform 0.000 0.580
1.4× 104 × diag(ΣAF ) Inverse gamma 2.000 0.300

(b) AFNS

1.4× 104 × diag(ΣRW ) Inverse gamma 2.000 0.300
(c) Random-walk

wi,st (st = 1, 2) Uniform 0.500 0.29
(d) Model weights

qii (i = 1, 2) Beta 0.900 0.05
(e) Transition probability

Note: ρNS,ij and ρAF,ij are the (i, j) elements of ΓNS and ΓAF , respectively.

where wAF,st is the weight on the AFNS model. For the MS -AF-RW model, the restric-

tion is replaced by

0 < wAF,st=1 < wAF,st=2 < 1.

All the restrictions including factor identification and regime identification restrictions

are imposed through the prior.
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4.2 MCMC Sampling

Because the joint posterior distribution in equation (4.1) is not analytically tractable,

we rely on a MCMC simulation method and sample the parameters, factors, regimes,

and predictive yield curves recursively from the joint posterior distribution as follows:

Algorithm 1: MCMC sampling

• Step 1: Sample ΘNS,ΘAF ,ΘRW , w|Y,Q

– Step 1(a): Sample ΘNS,ΘAF ,ΘRW , w|Y,Q

– Step 1(b): Sample Q|Y,S,ΘNS,ΘAF ,ΘRW , w

• Step 2: Sample S|Y,ψ

• Step 3: Sample X|Y,ψ and F|Y,ψ

• Step 4: Sample {yT+h}Hh=1|Y,X,F,S,ψ

More details about MCMC sampling in each step can be found in B .

5 Predictive Accuracy Measures

We evaluate the predictive accuracy using two measures. One is the posterior predictive

criterion (PPC) of Gelfand and Ghosh (1998), which is often used for density forecast

evaluation. The other measure is the root mean squared error (RMSE), which is a

popular measure of point forecast accuracy.

5.0.1 Posterior Predictive Criterion

We follow Zantedeschi et al. (2011) and Chib and Kang (2013), and evaluate the predic-

tive accuracy of the density forecasts by using the posterior predictive criterion (PPC)

of Gelfand and Ghosh (1998). Given each pooled model and in-sample data Y, the PPC

for h-month-ahead posterior predictive density of τ−period bond yield, PPCY(τ, h) is

computed as

PPCY(τ, h) = DY(τ, h) + WY(τ, h)
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where

DY(τ, h) = Var (yT+h(τ)|Y)

and

WY(τ, h) =
[
yoT+h(τ)− E (yT+h(τ)|Y)

]2
The term DY(τ, h) is the posterior variance of the predictive yield, which is large when

the model has too many restrictions or redundant parameters. The term WY(τ, h) is the

squared errors and evaluates the predictive goodness-of-fit. Let TH denote the number of

the out-of-sample datasets. Then, the PPC(τ, h) is obtained as the average of PPCY(τ, h)

over the 108(=TH) out-of-samples.

PPC(τ, h) =
1

TH

∑
Y

PPCY(τ, h)

By definition, smaller values of PPC and RMSE are preferable.

5.0.2 Root Mean Squared Error

Suppose that yoT+h(τ) is the realized τ -month bond yield, and E (yT+h(τ)|Y) is the

posterior mean of yT+h(τ). Then, RMSE of the h-month-ahead bond yield with τ -month

to maturity, denoted by RMSE(τ, h), is given by

RMSE(τ, h) =

√
1

TH

∑
Y

[
yoT+h(τ)− E (yT+h(τ)|Y)

]2
.

6 Empirical Results

In this section, we evaluate and compare the out-of-sample forecasting performance of

the pooled models. In particular, we concentrate on the predictive gain of pooling the

individual yield curve prediction models.

Our data comprise monthly yields on U.S. government bonds ranging February 1994

to December 2013. The set of maturities in month is {3, 6, 12, 24, 36, 60, 84, 120}. The

data are obtained from the Federal Reserve Bank of St. Louis economic data.

For model comparison, we calculate PPC and RMSE values from rolling window

estimation. The window size is 120 months and the forecast horizon is one- through

14



Table 3: Rolling Windows: in-sample and out-of-sample

in-sample out-of-sample
1 Feb. 1994 - Jan. 2004 Feb. 2004 - Jan. 2005
2 Mar. 1994 - Feb. 2004 Mar. 2004 - Feb. 2005
3 April 1994 - Mar. 2004 April 2004 - Mar. 2005

...
...

54 Aug. 1997 - July 2008 Aug. 2008 - July 2009
55 Sept. 1997 - Aug. 2008 Sept. 2008 - Aug. 2009

...
...

107 Dec. 2002 - Nov. 2012 Dec. 2012 - Nov. 2013
108 Jan. 2003 - Dec. 2012 Jan. 2013 - Dec. 2013

twelve-months. The first out-of-sample period is February 2004 to January 2005 and

the corresponding in-sample period is February 1994 to January 2004. We simulate

the predictive yield curves and compute the squared errors and PPCY. Then, we move

forward the in-sample and out-of-sample by one-month, and compute the squared errors

and PPCY. This procedure is repeated 108 times where the last out-of-sample period

is January 2013 to December 2013. After all, we obtain 108 sqaured erros and PPCYs

for each pair of maturity and forecast horizon. Using them we are able to compute

and compare the PPCs and RMSEs of the pooled models with those of the individual

models. The pairs of the in-sample and out-of-sample are given in Table 3.

6.1 PPC Comparison

Table 4 presents the best models based on the PPC. For easier reference, we use shorter

model specification indices: ‘N ’ stands for the DNS, ‘A’ for the AFNS , ‘R’ for the RW.

The subscript ‘E’ stands for the equal weights, ‘C’ for the constant weights, and ‘M ’

for the Markov-switching weights. For example, ‘NRE’ in Table 4 indicates the pooled

model of DNS and RW with equal weight model (i.e., NS-RW-Equal).

Table 4 shows that all the best models are one of the pooled models. In particular,

the equal weight NS-RW model, NS-RW-Equal outperforms the other models for the

maturities of three months through three years regardless of the forecast horizon. For

the seven-year bond yield, the NS-RW-Equal forecasts best at all the forecast horizons

15



except for the one-month-ahead forecast. Further, pooling all individual models with

equal weights is found to help improve the predictive accuracy of five- and ten-year bond

yields.

There are three important implications from the PPC comparison. First, as shown in

Tables 5 and 6, the predictive gain from the pooling method is remarkable. Especially,

the NS-RW-Equal consistently outperforms the three individual models across all ma-

turities and forecast horizons. Meanwhile, the Bayesian model averaging tends to pick

one of the three individual models. The selected model is usually either DNS or RW

model, but their density forecasting performance is found to be worse than that of the

pooled model of the DNS and RW. This does not imply that pooling individual models

guarantees better density forecasts than choosing one of the individual models. As the

Tables 5 and 6 demonstrate, many pooled models produce less accurate forecasts than

does the DNS or RW model. As the more models are included in the pool, the more

parameters are to be estimated and prediction can be inefficient since the information

contained in the data is fixed.

Second, although the RW model is not the best prediction model for density fore-

casting, all the best model combinations include the RW model in the pool. Therefore,

the RW plays an essential role in improving the density forecasting as well as the point

forecasting. Third, the theoretical model, AFNS can help produce more accurate density

forecasts of long-term bond yields, and thus this model should not be excluded from the

pool. This finding is very meaningfull in sense that the AFNS has been less popular

than the DNS and RW models in yield curve prediction.

It is interesting that the best pooled models have equal model weights. Estimating

the weights which are either constant or follow the Markov-process can improve in-

sample-fit, but at the same time, it causes inefficiency. This inefficiency has been already

pointed in the literature, for instance, Smith and Wallis (2009), Stock and Watson

(2004), and Winkler and Clemen (1992).
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Table 4: Best Models: PPC

3m 6m 12m 24m 36m 60m 84m 120m
1-month-ahead NRE NRE NRE NRE NRE ARE ARE ARE

2-month-ahead NRE NRE NRE NRE NRE ARE NRE ARE

3-month-ahead NRE NRE NRE NRE NRE ARE NRE NRE

4-month-ahead NRE NRE NRE NRE NRE NARE NRE NRE

5-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

6-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

7-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

8-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

9-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

10-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

11-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

12-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

Note: NRE , ARE , and NARE indicate NS-RW-Equal, AF-RW-Equal, and NS-AF-RW-Equal,

respectively.

6.2 RMSE Comparison

We move to the point forecasting evaluation of the pooling method. For each pair of

maturity and forecast horizon, we calculate RMSE(τ, h), and choose the best prediction

models producing the smallest RMSE value among the competing models. Table 7

presents the best models for each maturity across forecast horizons. Tables 8 and 9

reports that the RMSEs for all the maturities at 1, 3, 6, and 12-month-ahead horizons

to show the relative performance of the alternative models. The RMSEs are normalized

by that of the RW model for each maturity. Bold entries indicate the best prediction

models for each pair of maturity and forecast horizon.

Two important findings emerge from the tables. First, in terms of the RMSE com-

parison the RW model outperforms the other models in 73 cases out of 96 cases (12

forecast horizons times 8 maturities) in contrast to the results from the PPCs. Particu-

larly, the RW produces the most accurate point forecasts of 3, 24, 36, 60, and 84 month

bond yields at all forecast horizon.

Second, the pooled model, NS-RW-MS forecasts best for six-month bond yield at long

forecast horizons. In addition, the NS-AF-Const is superior in short-term forecasting of
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10-year bond yield. As shown in Tables 8 and 9, however, the differences between the

RMSEs of the two pooled models and the RW model are not substantial. Therefore,

in terms of point forecasts the predictive gain from pooling various yield curve models

does not seem to be remarkable.

6.3 Further Discussion

6.3.1 Robustness to the Out-of-Sample Selection

For a robustness check, we evaluate the pooling method based on the PPC and RMSE

values over the last 54 forecast periods, starting in September 2008 to August 2009.

Table 10 reports the best models which achieve the smallest PPC and RMSE values

for each pair of maturity and forecasting horizon. The results are quite consistent with

those from the 108 forecast periods.

6.3.2 Model Weights and Posterior Probability of Regimes

Finally, we discuss the estimates of the model weights using the full sample of February

1994 to December 2013. These estimates can be a measure of the relative importance

of each individual model in the pooled models. Table 11 presents the estimated weights

for the constant weight model. It is found that the DNS model has a higher weight in

general, and that the RW model has a lower weight during the full sample period.

However, the models weights do not seem to be constant over time. Table 12 presents

the estimated Markov-switching weights, and Figure 1 plots the posterior probabilities

of the regime 2. First of all, it can be seen that the model weights are strongly regime-

dependent, and the regime changes are drastic over time. As a result, the regimes seem

to be well-identified.

More importantly, the role of the RW model in the pooled models became more

important after the recent crisis. For instance, in the case of the NS-AF-RW-MS, the

weights on the DNS and RW models in regime 1 are 0.219 and 0.429, respectively.

Meanwhile, the weights are 0.752 and 0.133 in regime 2. As the figure shows, the

posterior probability of regime 2 has been persistent, but decreased drastically around

2008. Hence, the predictive ability of the DNS model was superior before the recent
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financial crisis, but the RW model was dominant after the crisis. The bigger role of the

RW model during the crisis can be attributed to the fact that the RW enables to capture

a structural change in the U.S. yield curve dynamics. Table 12 and Figure 1 confirm

that this is consistent for the NS-RW-MS and AF-RW-MS models.

7 Conclusion

In this paper we examine whether the pooling method can help improve the accuracy

of yield forecasts. The pool of models includes the dynamic Nelson-Siegel model, the

arbitrage-free Nelson-Siegel model, and the random walk model. We combine these

potentially misspecified models in a linear form suggested by Geweke and Amisano

(2012), Geweke and Amisano (2011) and Waggoner and Zha (2012). We evaluate the out-

of-sample forecasts of the pooled models based on the PPC and RMSE. The empirical

results of the PPC comparison demonstrate that the pooled model of the DNS and RW

with equal weights produces accurate density forecasts dominating the three individual

models at all maturities and forecast horizons. Meanwhile, the predictive gain from the

pooling method does not seem to be substantial in the point forecasts.

Our empirical finding implies that despite the higher computational cost, the pooling

method is worth trying when multiple prediction models compete. However, we do not

argue that our pooled model is the best model because possibly a different pooled model

of different individual models can show a better forecasting performance. Maybe, one

may include the DNS and AFNS models with macroeconomic factors or regime-switching

yield curve models in the pool. In addition, it would be interesting to examine various

approaches to averaging bond yield forecasts and compare their performance like in

Clark and McCracken (2010). We leave them as future work.
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A Likelihood

This section presents the step by step procedure for the log likelihood calculation. Sup-

pose that ψ is the set of all model parameters and the log likelihood logL is initialized

at 0. At time 1, p(st−1|Yt−1,ψ) is given at the unconditional probability of regime st.

For t = 1, 2, .., T , the following steps are sequentially repeated.

Algorithm 2: Log likelihood calculation

• Step 1: The predictive probability of regime st, p(st = j|Yt−1,ψ) is computed as

p(st = j|Yt−1,ψ)

=
2∑
i=1

Pr[st = j|st−1 = i,ψ]× Pr(st−1 = i|Yt−1,ψ)

=
2∑
i=1

qij × p(st−1 = i|Yt−1,ψ), j = 1, 2

• Step 2: The predictive model weight on M1, w1,st is given by

W1,t =
2∑

st=1

w1,st × p(st|Y o
t−1,ψ)

so the predictive model weight on M2 is W2,t = 1−W1,t.

• Step 3: We now have the conditional likelihood density p(yt|Yt−1,ψ) as

W1,t × p(yt|Yt−1,Θ1,M1) + W2,t × p(yt|Yt−1,Θ2,M2),

and logL = logL + log p(yt|Yt−1,ψ)

• Step 4: The updated probability of regime st, p(st = i|Yt,ψ) is calculated and

retained as

p(st = i|Yt,ψ)

= p(st = i|Yt−1,ψ,yt)

=
p(st = i,yt|Yt−1,ψ)

p(yt|Yt−1,ψ)

=
p(yt|Yt−1,ψ, st = i)p(st = i|Yt−1,ψ)

p(yt|Yt−1,ψ)
for i = 1, 2

where the predictive density of yt given st is simply given by

p(yt|Yt−1,ψ, st)
= w1,st × p(yt|Yt−1,Θ1,M1) + (1− w1,st)× p(yt|Yt−1,Θ2,M2)
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• Step 5: t = t + 1 and go to Step 1 if t ≤ T

B Details of MCMC Sampling

We now discuss the details of the each MCMC step. The burn-in is 1,000 and the MCMC

simulation size beyond the burn-in is 10,000.

B.1 Parameters Sampling

First of all, Θ = (ΘNS,ΘAF ,ΘRW , w) are simulated by the tailored randomized blocking

Metropolis-Hastings algorithm (TaRB-MH, Chib and Ramamurthy (2010)). We note

that the posterior density of Θ is proportional to the product of the likelihood and the

prior as

π (Θ|Y,Q) ∝ f (Y|ψ)× π(Θ). (B.1)

We simulate Θ|Y,Q rather than Θ|Y,S,X,Q by integrating out the regimes and latent

factors because the former is more efficient than the latter. The likelihood computation

is illustrated in ’A.

In every MCMC iteration, we apply the TaRB-MH method and sample Θ given

(Y,Q). This algorithm is particularly useful when the posterior density is high-dimensional

and its surface is possibly irregular. For the technical details, refer to Chib and Rama-

murthy (2010) or Chib and Kang (2013).

Next, since the transition probability Q is independent of (Y,Θ) given the regimes

S, it is sampled from

Q|S.

Further, its prior is conjugate, and the transition probabilities are sampled from a beta

distribution.

B.2 Regime Sampling

The time-series of the regimes S is simulated in one block by the multi-move method

(Chib (1998)). This method consists of two stages. The first stage is to calculate the

filtered probabilities, Pr(st|Yt,ψ) as

Pr(st = j|Yt,ψ) =

∑2
i=1 p(yt|Yt−1, st = j,ψ)× Pr(st = j|st−1 = i,ψ)∑2

j=1

[∑2
i=1 p(yt|Yt−1, st = j,ψ)× Pr(st = j|st−1 = i,ψ)

]
=

∑2
i=1 p(yt|Yt−1, st = j,ψ)× qij∑2

j=1

[∑2
i=1 p(yt|Yt−1, st = j,ψ)× qij

]
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for j = 1, 2. Then, the conditional density of yt p(yt|Yt−1, st,ψ) is computed as the linear

combination of the model-specific conditional densities of yt: p(yt|Yt−1,ΘNS,MNS),

p(yt|Yt−1,ΘAF ,MAF ), and p(yt|Yt−1,ΘRW ,MRW ). That is,

p(yt|Yt−1, st,ψ)

= wNS,st × p(yt|Yt−1,ΘNS,MNS) + wAF,st × p(yt|Yt−1,ΘAF ,MAF )

+(1− wNS,st − wAF,st)× p(yt|Yt−1,ΘRW ,MRW )

Those model-specific conditional densities are already given in equations (3.5), (3.14),

and (3.16), respectively.

In the second stage, {st}Tt=1 is sampled through a backward recursion. The regime at

time T , sT is first drawn with the filtered probability Pr(sT |YT ,ψ). Then, conditioned on

st+1 one can compute Pr(st|Yt, st+1,ψ) using the filtered probabilities as the following:

Pr(st = i|Yt, st+1,ψ) (B.2)

=
qij × Pr[st = i|Yt,ψ]∑2
i=1 qij × Pr[qt = i|Yt,ψ]

, i = 1, 2

Now given st+1, st is sampled with the probability Pr(st|Yt, st+1,ψ) for t = T − 1, T −
2, .., 1, which completes the regime sampling.

B.3 Factor Sampling

The latent factors X in the DNS model are sampled independently of (ΘAF ,ΘRW , w,Q).

Given (ΘNS, Y ), X is typically simulated by the Carter and Kohn approach (Carter

and Kohn (1994)). Meanwhile, one can exactly compute the factors F = {f t}Tt=1 in the

AFNS model as

ft = (bB)−1 ×
(
yBt − aB

)
by using the basis yields and the model parameters.

B.4 Predictive Yield Curve Sampling

Each MCMC cycle is completed by sampling the posterior predictive draws given (Y,

X, F, S, ψ). For each posterior draw (yT ,xT , fT , sT ,ψ) and forecast horizon of h =

1, 2, .., H, we first simulate the predictive draws of the factors {xT+h, fT+h}Hh=1. Given the

factors and parameters, the model-specific predictive bond yields are generated within

the individual model specifications. Next, the predictive regime {sT+h}Hh=1 is sampled

by the Markov-switching process, and it determines the model weights for each forecast

horizon. Finally, the predictive yield curve is computed as the linear combination of
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the model-specific predictive yield curves, and retained as the predictive draws. The

following algorithm summarizes the predictive yield curve simulation.

Algorithm 3: Posterior predictive distribution simulation

• Step 1: Sample the factors {xT+h}Hh=1|X,ΘNS and {fT+h}Hh=1|F,ΘAF

• Step 2: Sample the model-specific predictive yields

{yNS,T+h}Hh=1|X,ΘNS, {yAF,T+h}Hh=1|F,ΘAF , and {yRW,T+h}Hh=1|Y,ΘRW

• Step 3: Sample the predictive regimes, {sT+h}Hh=1|S,Q

• Step 4: For h = 1, 2, .., H, compute the predictive yield curve as

yT+h = wNS,sT+h
× yNS,T+h + wAF,sT+h

× yAF,T+h

+(1− wNS,sT+h
− wAF,sT+h

)× yRW,T+h

• Step 5: Retain {yT+h}Hh=1 as a posterior predictive draw
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Table 5: 1- and 3-month ahead density forecasts evaluations: PPC

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.112 1.209 1.124 1.102 1.320 1.408 1.267 1.032
AFNS 4.596 4.583 3.627 2.200 1.777 1.469 1.216 0.795
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.790 1.671 1.300 1.043 1.158 1.035 1.140 0.767
NS-AF-Const 1.116 1.102 0.956 0.937 1.081 1.027 1.051 0.846
NS-AF-MS 1.941 1.980 1.655 1.310 1.272 1.116 1.146 0.931
NS-RW-Equal 0.749 0.708 0.653 0.677 0.748 0.779 0.752 0.676
NS-RW-Const 0.957 0.983 0.931 0.952 1.088 1.128 1.042 0.882
NS-RW-MS 0.887 0.907 0.850 0.870 0.978 0.999 0.945 0.833
AF-RW-Equal 1.655 1.615 1.319 0.953 0.853 0.736 0.750 0.620
AF-RW-Const 3.095 3.047 2.438 1.586 1.345 1.118 1.048 0.749
AF-RW-MS 2.719 2.578 1.990 1.310 1.089 0.934 0.901 0.670
NS-AF-RW-Equal 1.413 1.329 1.116 0.982 1.018 0.904 1.009 0.791
NS-AF-RW-Const 1.141 1.109 1.023 1.049 1.197 1.168 1.193 0.940
NS-AF-RW-MS 1.676 1.730 1.570 1.372 1.402 1.296 1.401 1.163

(a) 1-month-ahead

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.113 1.047 1.024 1.074 1.152 1.175 1.106 1.000
AFNS 3.964 3.657 3.004 2.043 1.657 1.170 1.138 0.839
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.680 1.501 1.259 1.077 1.082 0.966 1.023 0.818
NS-AF-Const 1.099 1.005 0.937 0.949 0.990 0.915 0.929 0.824
NS-AF-MS 1.685 1.558 1.354 1.166 1.098 0.924 0.947 0.837
NS-RW-Equal 0.806 0.769 0.743 0.733 0.747 0.741 0.717 0.661
NS-RW-Const 0.988 0.950 0.937 0.974 1.022 1.029 0.978 0.887
NS-RW-MS 0.910 0.882 0.864 0.887 0.924 0.927 0.891 0.826
AF-RW-Equal 1.558 1.474 1.282 1.002 0.897 0.724 0.767 0.663
AF-RW-Const 2.753 2.567 2.163 1.577 1.346 1.006 1.052 0.832
AF-RW-MS 2.453 2.229 1.807 1.320 1.114 0.859 0.922 0.760
NS-AF-RW-Equal 1.211 1.126 1.007 0.882 0.853 0.733 0.802 0.688
NS-AF-RW-Const 0.992 0.929 0.894 0.909 0.943 0.894 0.901 0.790
NS-AF-RW-MS 1.210 1.158 1.074 1.000 0.991 0.894 0.939 0.833

(b) 3-month-ahead

Note: Bold entries indicate the best density forecasting performance for each maturity and

forecast horizon.
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Table 6: 6- and 12-month ahead density forecasts evaluations: PPC

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.103 1.045 1.027 1.047 1.096 1.077 1.023 0.937
AFNS 3.261 3.072 2.666 1.969 1.646 1.107 1.123 0.855
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.473 1.378 1.233 1.079 1.061 0.920 0.969 0.805
NS-AF-Const 1.085 1.028 0.981 0.957 0.968 0.871 0.883 0.799
NS-AF-MS 1.469 1.399 1.283 1.134 1.064 0.874 0.895 0.798
NS-RW-Equal 0.847 0.834 0.805 0.747 0.739 0.712 0.693 0.644
NS-RW-Const 0.998 0.975 0.968 0.966 0.988 0.963 0.922 0.839
NS-RW-MS 0.932 0.909 0.893 0.881 0.900 0.882 0.856 0.795
AF-RW-Equal 1.397 1.359 1.237 0.998 0.894 0.703 0.746 0.649
AF-RW-Const 2.337 2.230 1.984 1.543 1.340 0.956 1.023 0.826
AF-RW-MS 2.082 1.945 1.672 1.296 1.117 0.825 0.904 0.758
NS-AF-RW-Equal 1.068 1.039 0.969 0.848 0.800 0.660 0.706 0.619
NS-AF-RW-Const 0.939 0.914 0.900 0.884 0.890 0.809 0.811 0.729
NS-AF-RW-MS 1.050 1.028 0.987 0.926 0.907 0.799 0.822 0.738

(a) 6-month-ahead

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.089 1.045 1.037 1.064 1.100 1.065 0.995 0.929
AFNS 2.468 2.394 2.229 1.873 1.660 1.161 1.152 0.894
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.203 1.169 1.120 1.058 1.045 0.907 0.915 0.788
NS-AF-Const 1.046 1.011 0.994 0.988 0.991 0.890 0.867 0.804
NS-AF-MS 1.225 1.196 1.161 1.107 1.070 0.902 0.894 0.822
NS-RW-Equal 0.884 0.870 0.844 0.769 0.733 0.663 0.618 0.572
NS-RW-Const 0.989 0.970 0.968 0.965 0.973 0.925 0.861 0.792
NS-RW-MS 0.940 0.918 0.913 0.900 0.903 0.859 0.808 0.751
AF-RW-Equal 1.195 1.181 1.125 0.966 0.869 0.659 0.664 0.568
AF-RW-Const 1.786 1.748 1.654 1.428 1.288 0.933 0.948 0.764
AF-RW-MS 1.635 1.574 1.448 1.231 1.090 0.788 0.828 0.690
NS-AF-RW-Equal 0.941 0.942 0.926 0.854 0.797 0.635 0.636 0.556
NS-AF-RW-Const 0.932 0.917 0.921 0.914 0.909 0.813 0.782 0.710
NS-AF-RW-MS 0.966 0.958 0.958 0.931 0.907 0.788 0.773 0.701

(b) 12-month-ahead

Note: Bold entries indicate the best density forecasting performance for each maturity and

forecast horizon.
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Table 7: Best Models: RMSE

3m 6m 12m 24m 36m 60m 84m 120m
1-month-ahead R NRE NRM R R R R NRM

2-month-ahead R N N R R R R NAM
3-month-ahead R N N R R R R NAC
4-month-ahead R N N R R R R NAC
5-month-ahead R N N R R R R NAC
6-month-ahead R N N R R R R NAM
7-month-ahead R R N R R R R R
8-month-ahead R R R R R R R R
9-month-ahead R NRM R R R R R R
10-month-ahead R NRM R R R R R R
11-month-ahead R NRM R R R R R R
12-month-ahead R NRM R R R R R R

Note: N , R, NRE , NRM , NAC , and NAM indicate DNS, RW, NS-RW-Equal, NS-RW-MS,

NS-AF-Const, and NS-AF-MS, respectively.
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Table 8: 1- and 3-month-ahead point forecasts evaluations: RMSE

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.036 1.007 0.905 1.043 1.232 1.326 1.206 1.006
AFNS 1.074 1.079 0.983 1.112 1.227 1.101 1.272 1.047
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.178 1.124 1.010 1.155 1.342 1.294 1.385 1.079
NS-AF-Const 1.090 1.040 0.925 1.058 1.207 1.163 1.196 1.005
NS-AF-MS 1.257 1.273 1.173 1.230 1.279 1.145 1.253 1.079
NS-RW-Equal 1.027 0.980 0.927 1.035 1.098 1.133 1.086 0.998
NS-RW-Const 1.039 1.001 0.913 1.052 1.177 1.234 1.147 1.001
NS-RW-MS 1.021 0.990 0.904 1.028 1.126 1.162 1.101 0.998
AF-RW-Equal 1.083 1.081 1.029 1.098 1.125 1.036 1.145 1.040
AF-RW-Const 1.154 1.158 1.079 1.174 1.244 1.112 1.279 1.093
AF-RW-MS 1.138 1.106 1.008 1.142 1.173 1.075 1.222 1.063
NS-AF-RW-Equal 1.274 1.236 1.166 1.271 1.338 1.252 1.354 1.163
NS-AF-RW-Const 1.275 1.239 1.164 1.276 1.388 1.368 1.374 1.157
NS-AF-RW-MS 1.450 1.468 1.400 1.435 1.481 1.416 1.474 1.278

(a) 1-month-ahead

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.045 0.974 0.942 1.057 1.131 1.186 1.128 1.017
AFNS 1.150 1.125 1.092 1.180 1.223 1.059 1.251 1.108
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.218 1.144 1.085 1.176 1.252 1.235 1.299 1.136
NS-AF-Const 1.103 1.023 0.976 1.064 1.114 1.079 1.100 0.993
NS-AF-MS 1.203 1.136 1.073 1.132 1.143 1.048 1.104 1.008
NS-RW-Equal 1.036 0.998 0.986 1.050 1.070 1.092 1.063 0.998
NS-RW-Const 1.054 1.007 0.987 1.085 1.134 1.174 1.129 1.035
NS-RW-MS 1.022 0.985 0.962 1.045 1.084 1.115 1.081 1.012
AF-RW-Equal 1.106 1.093 1.079 1.130 1.140 1.067 1.160 1.087
AF-RW-Const 1.215 1.194 1.174 1.245 1.268 1.141 1.301 1.181
AF-RW-MS 1.168 1.128 1.085 1.170 1.180 1.090 1.235 1.141
NS-AF-RW-Equal 1.155 1.109 1.082 1.142 1.161 1.108 1.185 1.088
NS-AF-RW-Const 1.139 1.077 1.046 1.123 1.159 1.146 1.153 1.043
NS-AF-RW-MS 1.183 1.135 1.100 1.159 1.179 1.142 1.179 1.078

(b) 3-month-ahead

Note: Bold entries indicate the best point forecasting performance for each maturity and

forecast horizon.
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Table 9: 6- and 12-month ahead point forecasts evaluations: RMSE

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.039 0.997 0.986 1.062 1.127 1.153 1.104 1.009
AFNS 1.125 1.127 1.131 1.211 1.265 1.084 1.277 1.159
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.169 1.139 1.123 1.193 1.261 1.225 1.286 1.158
NS-AF-Const 1.091 1.052 1.031 1.085 1.123 1.074 1.091 1.001
NS-AF-MS 1.154 1.120 1.095 1.133 1.144 1.037 1.078 0.988
NS-RW-Equal 1.029 1.017 1.016 1.055 1.081 1.088 1.069 1.014
NS-RW-Const 1.044 1.023 1.025 1.097 1.144 1.164 1.127 1.044
NS-RW-MS 1.018 0.998 0.995 1.054 1.095 1.114 1.089 1.025
AF-RW-Equal 1.076 1.081 1.088 1.133 1.156 1.074 1.162 1.098
AF-RW-Const 1.160 1.163 1.177 1.255 1.297 1.154 1.310 1.210
AF-RW-MS 1.128 1.115 1.105 1.178 1.206 1.099 1.244 1.164
NS-AF-RW-Equal 1.079 1.068 1.066 1.110 1.130 1.056 1.119 1.044
NS-AF-RW-Const 1.075 1.050 1.045 1.099 1.131 1.092 1.097 1.013
NS-AF-RW-MS 1.080 1.062 1.060 1.113 1.140 1.088 1.113 1.032

(a) 6-month-ahead

3m 6m 12m 24m 36m 60m 84m 120m
DNS 1.031 1.008 1.017 1.107 1.190 1.249 1.200 1.127
AFNS 1.070 1.084 1.119 1.244 1.347 1.242 1.426 1.334
RW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
NS-AF -Equal 1.081 1.074 1.090 1.189 1.285 1.305 1.358 1.272
NS-AF-Const 1.065 1.044 1.049 1.120 1.181 1.169 1.167 1.102
NS-AF-MS 1.084 1.071 1.079 1.148 1.198 1.144 1.166 1.100
NS-RW-Equal 1.019 1.011 1.022 1.068 1.109 1.129 1.099 1.054
NS-RW-Const 1.024 1.013 1.030 1.112 1.183 1.232 1.188 1.122
NS-RW-MS 1.004 0.992 1.006 1.078 1.142 1.185 1.149 1.091
AF-RW-Equal 1.026 1.032 1.054 1.120 1.170 1.117 1.190 1.134
AF-RW-Const 1.066 1.078 1.116 1.230 1.318 1.241 1.378 1.298
AF-RW-MS 1.059 1.059 1.073 1.162 1.221 1.145 1.287 1.226
NS-AF-RW-Equal 1.018 1.022 1.045 1.114 1.158 1.108 1.146 1.082
NS-AF-RW-Const 1.042 1.031 1.048 1.123 1.180 1.175 1.161 1.090
NS-AF-RW-MS 1.030 1.024 1.047 1.123 1.175 1.155 1.162 1.095

(b) 12-month-ahead

Note: Bold entries indicate the best point forecasting performance for each maturity and

forecast horizon.
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Table 10: Best Models: Robustness

3m 6m 12m 24m 36m 60m 84m 120m
1-month-ahead NRE NRE NRE NRE NRE ARE NRE ARE

2-month-ahead NRE NRE NRE NRE NRE ARE NRE NRE

3-month-ahead NRE NRE NRE NRE NRE ARE NRE NRE

4-month-ahead NRE NRE NRE NRE NRE NRE NRE NRE

5-month-ahead NRE NRE NRE NRE NRE NARE NRE NRE

6-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

7-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

8-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

9-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

10-month-ahead NRE NRE NRE NRE NRE NARE NRE NARE

11-month-ahead NRE NRE NRE NRE NRE NRE NRE NARE

12-month-ahead NRE NRE NRE NRE NRE NRE NRE NARE

(a) PPC

3m 6m 12m 24m 36m 60m 84m 120m
1-month-ahead R N NRM R R R R NRE

2-month-ahead R N N R R R R NAM
3-month-ahead R N N R R R R NRE

4-month-ahead R R R R R R R R
5-month-ahead R R R R R R R NAM
6-month-ahead R R R R R R R NAM
7-month-ahead R R R R R R R NAM
8-month-ahead R R R R R R R R
9-month-ahead R R R R R R R R
10-month-ahead R R R R R R R R
11-month-ahead R R R R R R R R
12-month-ahead R R R R R R R R

(b) RMSE

Note: N , R, NRM , NRM , NAC , NAM , ARE , and NARE indicate DNS, RW, NS-RW-Equal,

NS-RW-MS, NS-AF-Const, NS-AF-MS, AF-RW-Equal, and NS-AF-RW-Equal, respectively.

These models are chosen based on the recent 54 out-of-sample predictions.
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Table 11: Constant model weight estimates

DNS AFNS RW
NS-AF-Const 0.678 0.322 -

(0.034) (0.034)
NS-RW-Const 0.749 - 0.251

(0.029) (0.029)
AF-RW-Const - 0.702 0.298

(0.033) (0.033)
NS-AF-RW-Const 0.593 0.181 0.226

(0.034) (0.027) (0.028)

Note: Standard errors are in parentheses.

Table 12: Markov-switching model weight estimates

Regime 1 (st = 1) Regime 2 (st = 2)
DNS AFNS RW DNS AFNS RW

NS-AF-MS 0.216 0.784 - 0.883 0.117 -
(0.048) (0.048) (0.015) (0.015)

NS-RW-MS 0.339 - 0.661 0.858 - 0.142
(0.080) (0.080) (0.027) (0.027)

AF-RW-MS - 0.276 0.724 - 0.834 0.166
(0.068) (0.068) (0.030) (0.030)

NS-AF-RW-MS 0.219 0.352 0.429 0.752 0.115 0.133
(0.051) (0.060) (0.062) (0.027) (0.014) (0.023)

Note: Standard errors are in parentheses.
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