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Abstract
El Niño Southern Oscillation (ENSO) impacts the supply and, to some extent, the
demand for primary commodities. But what are the consequences of this climatic
phenomenon for these commodity price dynamics? I consider monthly series of 43 pri-
mary commodity prices and sea surface temperature (SST) anomalies in the Niño3.4
region from January 1980 to December 2016. The SST anomalies serve as a proxy for
ENSO, as persistent positive (negative) SST deviations from their historical mean are
associated with El Niño (La Niña) events. I apply a family of time-varying smooth
transition autoregressive models to account for potentially complex dynamic relation-
ships between SST anomalies and prices. Overall, the estimated nonlinearities bring
out more amplified price responses during El Niño events, and at the onset of the ENSO
cycle. I find statistically significant linkages between SST anomalies and a subset of
agricultural commodity prices. This in-sample fit manifests in a forecasting environ-
ment for the commodities produced in the tropics. While I also find some in-sample
evidence for prices of selected nonagricultural commodities, e.g., timber and metals,
the ability of SST anomalies to predict these commodity prices in an out-of-sample
setting is lacking. These findings carry important welfare implications, especially for
developing economies that have been historically linked to the behavior of primary
commodity prices, and offer valuable insights to policy makers working in areas related
to economic growth and foreign aid programs, as well as those concerned with issues
of farm income and rural poverty.
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During 2015–2016, in the wake of one of the strongest El Niño events in recent history,
news concerning possible global food shortage and commodity prices spikes headlined the
popular media and intensified academic discussions. The concern was not unfounded, as
some of the most devastating weather events have been associated with extreme episodes of
the El Niño Southern Oscillation (ENSO) (Pielke Jr and Landsea, 1999; Davis, 2002). This
climate phenomenon is assessed more scrupulously now than ever before as a result of its
improved predictability (Stone et al., 1996; Ludescher et al., 2014), as well as a better general
understanding of its global economic consequences (Brunner, 2002; Cashin et al., 2017).
Because of apparent linkages between ENSO and weather, a large number of studies have
examined the production effect of this climate phenomenon, particularly in the agricultural
sector (e.g., Iizumi et al., 2014; Hsiang and Meng, 2015). But nontrivial linkages between
ENSO and a broader range of primary commodity prices require further investigation. To
the extent that the economies of developing countries are affected by primary commodity
price behavior, the insights from this article are of importance to policy makers within
local governments, as well as those in international organizations, who rely on short- and
intermediate-term forecasts of commodity prices.

This article contributes to the literature in several ways. First, it incorporates a compre-
hensive set of commodity spot prices to gain insight into the ENSO effect across different
commodity groups. Second, it relies on the time-varying smooth transition autoregressive
(TV-STAR) modeling framework of Lundbergh et al. (2003) to account for any parameter
nonlinearity or structural change in the ENSO–price relationship. Third, it applies the high-
est density regions (HDRs) of Hyndman (1995, 1996) to the generalized impulse–response
functions (GIRs) of Koop et al. (1996) to offer a more complete illustration of nonlinear
dynamics in commodity prices as a result of ENSO shocks. Finally, this article extends the
modeling framework to a forecasting exercise to assess the informational content of ENSO
in the out-of-sample predictability, i.e., causality in the Granger sense, of commodity prices.

El Niño is one of the two extreme phases of the ENSO cycle, the other being La Niña.
When neither of these is present, ENSO is said to be in a neutral phase. Figure 1 illustrates
some notable features of the weather effects of the ENSO phases. First, as a result of the
presence of so-called teleconnections, ENSO-related weather shocks not only manifest in
regions tangential to the Pacific (where the climate anomaly is observed), but also radiate
to more distant regions of the globe (Rasmusson, 1991). Second, regions within the tropical
band appear to be affected more than those outside of this band (Hsiang and Meng, 2015).
Third, the two phases do not necessarily result in weather conditions that are mirror images
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of each other (Hoerling et al., 1997; Zhang et al., 2014).

Figure 1: Global weather effects associated with ENSO phases

Source: International Research Institute for Climate and Society at Columbia University, based on
Ropelewski and Halpert (1989) and Mason and Goddard (2001).

Production is a crucial link connecting ENSO phases to commodity prices because ENSO-
induced weather anomalies directly affect regions that supply a wide range of agricultural
commodities. For example, the two largest palm oil producing countries, Malaysia and
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Indonesia, account for approximately 90% of world exports.1 Peru and Chile, the region
where the unusual warming of ocean waters associated with the El Niño phase was first
observed by local fishermen, account for nearly two-thirds of world fishmeal exports. Vietnam
and Indonesia produce and export more than 60% of internationally traded Robusta coffee,
and Brazil is responsible for nearly half of the world’s Arabica coffee exports.

While the agricultural sector is most susceptible to ENSO shocks, nonagricultural com-
modities may also be influenced by this climate anomaly. For example, ENSO-related
droughts can affect mining activities that rely on hydropower, while excessive precipita-
tion can flood roads and sites, thereby disrupting the supply of metals and minerals (World
Bank Group, 2015; Cashin et al., 2017). ENSO-induced heat and drought can cause wildfires
that may affect the availability of timber (Nepstad et al., 1999; Gan, 2006). As is the case
with agricultural commodities, the production of some nonagricultural commodities is ge-
ographically concentrated in ENSO-affected regions. While China leads all other countries
in the production of many metals, South Africa is the world’s largest platinum supplier,
with approximately 70% of global market share, Chile’s share of world copper production
is 35%, Mexico’s share of world silver production is nearly 20%, and Australia, Indonesia,
and Peru are noteworthy suppliers of a range of metals as well. Compared with agricultural
commodities, however, the effect of ENSO shocks on production in the nonagricultural sector
is likely to be weak, both statistically and economically. First, mining centers are dispersed
throughout Southeast Asia and various countries in Africa and the Americas, and not all
of these areas are simultaneously affected by ENSO. Second, in the nonagricultural sector,
ENSO-induced weather anomalies can only disrupt production in the short run, compared
with a more prolonged effect in the case of agricultural commodities.

The supply side effect is not the sole channel through which the ENSO cycle can impact
commodity price movements. To the extent that ENSO events affect economies of developed
as well as developing countries (e.g., Brunner, 2002; Laosuthi and Selover, 2007; Cashin
et al., 2017; Smith and Ubilava, 2017), this climate phenomenon can impact the prices of
commodities such as timber and metals, which are known to be linked to business cycles.
Alternatively, storms and hurricanes, the frequency of which can be attributed to distinct
ENSO phases (e.g., during the El Niño phase, “named storms” and hurricanes are less
likely in the Caribbean and Atlantic, but more likely in the eastern Pacific), can constitute
yet another channel through which this climate phenomenon can affect the demand for, and

1The statistics presented here and elsewhere, unless otherwise stated, are the author’s calculations, based
on various online publications of the U.S. Department of Agriculture and the U.S. Geological Survey.
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thus the prices of commodities used in construction. Moreover, extreme ENSO episodes that
adversely affect household incomes, particularly those in rural areas, can result in weaker
derived demand and downward pressure on precious metal prices. However, these effects are
unlikely to be strong or economically meaningful.

The foregoing discussion provides examples of the numerous ways in which ENSO cycles
can affect commodity price behavior. Here, I do not aim to investigate every channel that
can potentially impact price behavior in a structural framework. That is, the goal is not
to identify pathways through which ENSO impacts price movements. Rather, I am con-
cerned with examining the overall impact of ENSO on commodity prices in a reduced-form
framework. Put differently, the overarching aim of this study is to examine the relationship
between ENSO phases and price dynamics, regardless of what the causal mechanism might
be, and to assess the ability of ENSO-related sea surface temperature anomalies to predict
commodity price behavior. Thus, the findings of this study will provide important bene-
fits, particularly in terms of facilitating good decision-making, by producing more accurate
commodity price predictions.

Nonlinear Modeling and Testing Frameworks

In this article, I relax the linearity assumption in relation to the ENSO–price nexus. That
is, I allow for the possibility that price responses to ENSO shocks can be episodic, or regime-
dependent. This is facilitated by several underlying factors. First, the ENSO cycle is asym-
metric, as El Niño events tend to develop somewhat abruptly, whereas La Niña events often
evolve following El Niño events (e.g., Hall et al., 2001; Ubilava and Helmers, 2013). Second,
as noted above, weather anomalies associated with El Niño and La Niña phases are not
mirror images. Therefore, it is possible that the two phases can affect market conditions
in different ways. Moreover, observed weather patterns associated with ENSO events, i.e.,
teleconnections, are likely to be more pronounced during the most extreme episodes of this
climate phenomenon. Therefore, large deviations in the ENSO cycle may result in price
changes of disproportionate magnitudes, as compared with those associated with more mod-
erate shocks. Finally, the very nature of the production process of some commodities may
result in asymmetric price dynamics. For example, one can quickly reduce stocks of crops or
livestock in response to new information in the market, but restocking can take an extended
period of time (e.g., Holt and Craig, 2006).

In addition to the regime-dependent nonlinearities, the question of structural change in
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the ENSO–price relationship has recently gained attention. There are two key reasons for
this. First, the increasing knowledge about this climatic phenomenon may be causing dif-
ferent reactions from economic agents. Second, factors other than ENSO (e.g., technological
advancements and new policies), which have changed primary commodity price dynamics
over recent decades (Enders and Holt, 2012), may have altered the linkages between ENSO
and prices. In both cases, it is vital to account for parameter non-constancy in the re-
gression settings to facilitate accurate identification of the relationship between ENSO and
commodity prices.

While there may be several options for nonlinear modeling, a convenient econometric
approach for the current analysis is the TV-STAR modeling framework of Lundbergh et al.
(2003). The concept of smooth transition regressions was pioneered by Bacon and Watts
(1971), but Chan and Tong (1986) were the first to introduce a time series variant, the
smooth threshold autoregression. This was subsequently popularized as the smooth transition
autoregression (STAR) model. In a series of papers, Luukkonen et al. (1988); Teräsvirta and
Anderson (1992); Teräsvirta (1994); Eitrheim and Teräsvirta (1996) formalized the STAR
modeling and testing frameworks.

An important characteristic of a family of smooth transition models is that they relax
the assumption of instantaneous switching between regimes. That is, these models allow
a continuum of points, or thresholds, over which the transition between regimes occurs.
Such smoothness usually has an economic interpretation. For example, it can be the result
of heterogeneity among economic agents with different degrees of risk aversion who face
different transaction costs, or possess varying levels of ability (or willingness) to process
ENSO-related information. The structural change can also be gradual—rather than abrupt—
given the prolonged nature of technological change and adaptation. Thus, a TV-STAR model
can be seen as a generalized framework that nests an array of nonlinear models, as well as
a basic linear autoregression, as special cases. To the extent that the exact nature of the
ENSO–price relationship is a priori unknown, and moreover given that these relationships
are likely to vary across different commodity groups, the aforementioned flexibility, afforded
by the TV-STAR framework, is a particularly attractive feature of the current modeling
exercise. It is worth noting that TV-STAR models, or their restricted variants, have already
been successfully applied, albeit in different contexts, to analyzing commodity price behavior
(Holt and Craig, 2006; Craig and Holt, 2008; Balagtas and Holt, 2009; Ubilava and Holt, 2013;
Hood and Dorfman, 2015). In what follows, I provide a brief description of the econometric
specifications and testing framework of the time-varying and regime-dependent models.
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A Time Varying Smooth Transition Autoregressive Model

To begin, consider an additive nonlinear (i.e., piecewise linear) univariate time series model:

xt = θ00 +
p∑
i=1

θ0ixt−i +
K−1∑
k=1

(
θk0 +

p∑
i=1

θkixt−i

)
G (skt;ϑk) + εt, (1)

where xt is a realization of a random variable at time t; p is the autoregressive lag length;
K is the total number of regimes in the model; G (skt;ϑk) is a transition function, by
construction bounded between zero and one, where skt is the transition variable, and ϑk
is the set of parameters associated with (and defining the type or the curvature of) the
transition function; εt ∼ iid(0, σ2

ε) is the white noise process; and the rest are parameters to
be estimated. Equation (1) can also incorporate a set of deterministic or exogenous variables,
but these have been omitted here, for the sake of brevity.

A set of restrictions can transform equation (1) into various well-known autoregressive
models. For example, if G (skt;ϑk) = 0, ∀ k, t, equation (1) becomes a basic linear autore-
gression:

xt = θ0 +
p∑
i=1

θixt−i + εt. (2)

If K = 2 and G (skt;ϑ) = I (skt;ϑ), i.e., when the transition function is a Heaviside
indicator, equation (1) becomes a threshold autoregression (TAR) of Tong and Lim (1980).

Alternatively, if K = 2 and G (skt;ϑ) ∈ [0, 1], i.e., the transition function takes on
a continuum of values between zero and one, equation (1) becomes a smooth transition
autoregression (STAR) of Luukkonen et al. (1988) and Teräsvirta (1994):

xt = θ00 +
p∑
i=1

θ0ixt−i +
(
θ10 +

p∑
i=1

θ1ixt−i

)
G (st; γ, c) + εt, (3)

where G (st; γ, c) can take several possible forms. Two commonly applied logistic and expo-
nential transition functions—forming logistic STAR (LSTAR) and exponential STAR (ES-
TAR) models, respectively—are given by:

G (st; γ, c) =
{

1 + exp
[
−γ

(
st − c
σs

)]}−1
(logistic) (4)

G (st; γ, c) =
{

1− exp
[
−γ

(
st − c
σs

)2
]}

(exponential). (5)

In these smooth transition functions, the parameter vector consists of the smoothness pa-
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rameter γ > 0, and the centrality parameter, c, the latter usually constrained by [κs, 1− κs],
where κs is a truncation factor, within the range of the transition variable, which ensures
sufficient degrees of freedom in each regime of the estimated STAR model. Finally, σs is the
standard deviation of the transition variable. Its role in these expressions is to normalize the
smoothness parameter, γ, to make it effectively unit-free.

A practical benefit of working with STAR models is that they embed previously defined
AR and TAR models as special cases. For example, the LSTAR converges to the AR as
γ → 0, and to the TAR as γ → ∞, while the ESTAR converges to the AR both as γ → 0
and as γ → ∞. Furthermore, if the transition variable is set to be a function of time, e.g.,
st ≡ t∗ = t/T , equation (3) becomes a time-varying autoregression (TVAR).

Finally, if K = 3, i.e., if a model contains two transition functions, of which one is a
function of time, then equation (3) becomes a TV-STAR:

xt = θ00 +
p∑
i=1

θ0ixt−i +
(
θ10 +

p∑
i=1

θ1ixt−i

)
G (t∗; γτ , τ) (6)

+
(
θ20 +

p∑
i=1

θ2ixt−i

)
G (st; γc, c) + εt,

where, similar to c, τ ∈ [κt∗ , 1− κt∗ ], and the rest of the variables are as defined above. The
TV-STAR framework can be suitable for numerous applications, as the dynamic properties
of many economic variables, which include commodity price series, are often simultaneously
characterized by time-varying parameter nonconstancy as well as regime-dependent param-
eter nonlinearity.

Testing Linearity and Parameter Constancy

The question of whether a time-varying or regime-dependent nonlinearity is truly an under-
lying feature of the data, is empirical and should be tested. But the problem is that the
adequate hypothesis, i.e., H0 : γ = 0, cannot be examined directly because of unidentified
nuisance parameters under the null hypothesis. A case in point is the so-called Davies’ prob-
lem (Davies, 1977, 1987). For example, consider a STAR model given by equation (3), where
st = xt−` and ` ≤ p is a positive integer known as the delay factor. This equation can be
reduced to a linear AR model either by imposing a restriction on the transition parameter,
i.e. γ = 0, or by imposing a restriction on the autoregressive parameters associated with the
additive regime of the model, i.e. θ10 = θ11 = . . . = θ1p = 0. Therefore, the standard test
statistics are no longer applicable. As it turns out, the problem can be avoided by replacing

7



the transition function, G (st; γ, c), with a third order Taylor series approximation around
γ = 0 (see Luukkonen et al., 1988; Teräsvirta, 1994, for details). The result is a testable
auxiliary regression:

xt =
3∑
j=0

(
ϕj0 +

p∑
i=1

ϕjixt−i

)
sjt + ξt, (7)

where ϕji, ∀ j, i, are functions of the parameters of the original STAR model, and
ξt combines the original error term, εt, and the approximation error resulting from the
Taylor series expansion. The linearity test is now equivalent to testing the null hypothesis
of H ′0: ϕji = 0, ∀ j = 1, . . . , 3, i = 0, . . . p. Additionally, tests against LSTAR and ESTAR
models are also embedded in the testing framework. In particular, H ′03: ϕ3j = 0 and
H
′
01: ϕ1j = 0 | ϕkj = 0, ∀ k = 2, 3; j = 1, . . . , p, are tests against LSTAR; while H ′02:

ϕ2j = 0 | ϕ3j = 0, j = 1, . . . , p, is a test against ESTAR. The appropriate model is selected
based on the probability values of the above hypotheses (e.g., Teräsvirta, 1994).

Several features associated with nonlinear model selection need to be noted. First, the
transition variable, st, is often a priori unknown. In such instances, a set of candidate tran-
sition variables is considered, and the most appropriate one is selected based on probability
values associated with the null hypothesis for linearity. In conjunction with this, one may
also estimate several candidate models, and decide on a suitable transition variable and type
of nonlinear function based on the model fit (e.g., Akaike Information Criterion), as well as
the remaining nonlinearity test results. Second, the parameter constancy test is a special
case of the linearity test, where st is substituted by t∗ in equation (7). Typically, parame-
ter nonconstancy is addressed—i.e., a TVAR is estimated where applicable—before moving
on to testing and estimating a STAR or a TV-STAR. Finally, if a TV-STAR is a suspect,
the so-called specific-to-general approach can be implemented. This involves estimating the
multiple-regime model (e.g., van Dijk and Franses, 1999), whereby both time-varying and
regime-dependent components are incorporated as transition functions (see, e.g., Lundbergh
et al., 2003; Holt and Craig, 2006).

Data

In this study, I use monthly series of a measure of ENSO intensity and primary commodity
prices spanning the period from January 1980 to December 2016. Two better-known indices
depicting ENSO cycles are sea surface temperature (SST)-based measures in the equatorial
Pacific region, and the air-pressure-based Southern Oscillation Index (SOI) calculated from
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measures near Tahiti and Darwin. Previous studies have used either or both of these indices
(e.g., Brunner, 2002; Ubilava and Holt, 2013; Cashin et al., 2017), but the SST anomalies
derived from observations collected in the Niño3.4 region—a rectangular area between 5◦N
and 5◦S and between 170◦W and 120◦W—has become a more commonly applied measure of
ENSO intensity in the climatology and climate economics literature (e.g., Hsiang et al., 2011;
Hsiang and Meng, 2015). In this study, I also rely on the SST-based measure,2 which depicts
deviations from the average historic temperatures in a given month over the centered 30-year
base periods, and is tabulated by the Climate Prediction Center at the National Oceanic
and Atmospheric Administration (see Appendix figure A1 for the visual comparison of the
SST and SOI measures).

The ENSO cycle is said to be in an El Niño or a La Niña phase, if a three-month running
mean of the SST anomalies—a measure referred to as the Oceanic Niño Index (ONI)—
exceeds (in absolute terms) a threshold of ±0.5◦C for a minimum of five consecutive periods.
Thus, persistent positive deviations in the ONI constitute an El Niño event, and persistent
negative deviations amount to a La Niña episode. These events, along with the monthly
SST anomalies, are shown in figure 2.

Primary commodity price series are obtained from World Bank and International Mon-
etary Fund publications. These are spot prices (FOB or CIF), and are indicative of world
prices for the various commodities. I consider several important commodity groups, includ-
ing cereal grains, forestry, farms and fishery, vegetable oils and meals, and industrial and
rare metals. See table 1 for a complete list and a brief description of commodities examined
in this article. For the purposes of the analysis, the nominal spot prices are deflated using
the U.S. producer price index, obtained from the U.S. Bureau of Labor Statistics, and then
transformed to natural logarithms. Hereafter, unless otherwise stated, prices refer to the
natural logarithm of real commodity prices.

Model Selection and Estimation

The primary building block of most nonlinear models, and certainly of the one used in this
study, is a basic linear specification. Let zt denote the measure of ENSO intensity, i.e., the
SST anomaly, in period t; and let yt denote the log-transformed real price of a commodity

2The Pearson correlation coefficient between the SST and SOI is approximately 0.8, suggesting that the
two indices will possibly yield comparable, but not identical results. See the Appendix for discrepancies in
model selection.
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Table 1: Description and Origin of the Considered Commodity Prices

Commodity Description and Origin

Aluminum 99.5% minimum purity, LME spot price, CIF UK ports
Barley Canadian No.1 Western Barley, spot price
Beef Australian and New Zealand 85% lean fores, CIF U.S. import price, (c/lb)
Chicken Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks, (c/lb)
Cocoa International Cocoa Organization cash price, CIF US and European ports
Coconut Oil Philippines/Indonesia, in bulk, CIF Rotterdam
Coffee (Arabica) International Coffee Organization New York cash price, ex-dock New York, (c/lb)
Coffee (Robusta) International Coffee Organization New York cash price, ex-dock New York, (c/lb)
Copper Grade A cathode, LME spot price, CIF European ports
Copra Philippines/Indonesia, in bulk, CIF NW European ports
Cotton Cotton Outlook ’A Index’, Middling 1-3/32 inch staple, CIF Liverpool, (c/lb)
Fishmeal Peru pellets, 65% Protein, CIF
Gold 99.5% refined, London afternoon fixing
Groundnut Oil Any origin, CIF Rotterdam
Hard Logs Best quality Malaysian Meranti, import price Japan, ($/m3)
Hard Sawnwood Dark Red Meranti, select and better quality, C&F U.K port, ($/m3)
Hides Heavy native steers, over 53 pounds, wholesale dealer’s price, FOB Chicago, (c/lb)
Lamb Frozen carcass, Smithfield London, (c/lb)
Lead 99.97% pure, LME spot price, CIF European Ports
Maize U.S. No.2 Yellow, FOB Gulf of Mexico
Nickel Melting grade, LME spot price, CIF European ports
Olive Oil Extra virgin less than 1% free fatty acid, ex-tanker price U.K.
Palm Oil Malaysia/Indonesia, in Bulk, 5% FFA, CIF NW European Ports
Platinum 99.9% refined, London afternoon fixing
Pork 51-52% lean Hogs, U.S. price (c/lb)
Rapeseed Oil Crude, FOB Rotterdam
Rice Thailand 5% broken milled white rice, FOB Bangkok
Salmon Farm Bred Norwegian Salmon, export price, ($/kg)
Silver 99.9% refined, London afternoon fixing
Soft Logs Average export price, U.S. for Douglas Fir, ($/m3)
Soft Sawnwood Average export price, U.S. for Douglas Fir, ($/m3)
Sorghum U.S. No.2 milo yellow, FOB Gulf ports
Soybean Meal Argentine 45/46% extraction (after January 1990); U.S. 44%, CIF Rotterdam
Soybean Oil Any origin, crude, FOB ex-mill Netherlands
Soybeans U.S. No.2 Yellow, CIF Rotterdam
Sugar ISA daily price, raw, FOB and stowed at greater Caribbean Ports ($/kg)
Sunflowerseed Oil European Union, FOB NW European ports
Tea Kenya auction price (after July 1998); London auctions, CIF U.K. warehouses, (c/kg)
Tin Standard grade, LME spot price
Tobacco Any origin, unmanufactured, general import, CIF U.S.
Wheat U.S. No.1 Hard Red Winter, Ordinary Protein, FOB Gulf of Mexico
Wool Coarse, 23 micron, Australian Wool Exchange spot quote (c/kg)
Zinc High grade 98% pure

Note: the commodity prices are denominated in US$ per metric ton, unless otherwise specified. The series
were sourced from World Bank and International Monetary Fund online data portals.
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Figure 2: SST anomalies and ENSO events

Note: Regions shaded with red (upward-sloping) lines represent the observed El Niño events; regions
shaded with blue (downward-sloping) lines represent the observed La Niña events.

in the same period.3 The first step is to identify the degree of integration of the time series
under consideration. Both the augmented Dickey–Fuller (ADF) and Kwiatkowski–Phillips–
Schmidt–Shin (KPSS) tests suggest that zt is stationary in levels, i.e., integrated of order
zero. So, a linear specification for the SST anomaly is an autoregressive process, augmented
with seasonal binary variables:

zt = α0 +
11∑
s=1

αsDst +
r∑
i=1

βizt−i + νt, (8)

where Dst is a monthly binary variable, and r is selected using the bottom-up sequential
testing approach to mitigate any serial correlation in νt, so that νt ∼ iid (0, σ2

ν).
As for commodity prices, the tests suggest that some are stationary in levels, i.e., in-

tegrated of order zero, while others follow a unit root process, i.e., are integrated of order
one (see Appendix table A1 for details). However, the ADF and KPSS tests rely on the
assumption that nonlinearity or parameter nonconstancy are not a feature of the data (e.g.,
Balagtas and Holt, 2009). Indeed, when applying the Zivot–Andrews (ZA) test, which allows

3Here, and in what follows, the notation omits the commodity-specific subscripts for simplicity.
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for a structural break in the time series, one can reject the null hypothesis of a unit root for a
subset of commodity prices that previously appeared to be integrated of order one. But this
hardly addresses all the peculiarities associated with unit root testing under nonlinearity or
parameter non-constancy—an area that is still evolving (for details, and a brief review of
the literature, see Demetrescu and Kruse, 2013).

This study abstracts from the foregoing complexity by simply allowing the possibility of
unit roots as well as stationarity to be a characteristic feature of commodity prices. That is,
while the prices of some commodities (e.g., metals) are likely to be better characterized by
a unit root process, both theory and empirical evidence support the notion of stationarity
for other groups of commodities (see, e.g., Wang and Tomek, 2007; Enders and Holt, 2012).
Therefore, I apply the following decision rule. For a given commodity price series, if either
the ADF or the ZA test rejects the null hypothesis of a unit root, the autoregressive process
is modeled in levels, otherwise—in first-differences. That is, for a stationary time series the
following linear autoregressive model is applied:

∆yt = δ0 +
11∑
s=1

δsDst +
q∑
j=0

ηjzt−j +
p−1∑
i=1

φi∆yt−i + ρyt−1 + εt, (9)

where ∆ is a first-difference operator; p is selected using the bottom-up sequential testing
approach to mitigate any serial correlation in εt, so that εt ∼ iid (0, σ2

ε); and q is selected
based on the sample-size-corrected Akaike information criterion (AICc). For difference-
stationary price series, the unit root is imposed by setting ρ = 0.

Note that equation (9) is, in essence, an autoregressive distributed lag model, ARDL(p,q),
augmented with seasonal dummy variables. Notably, this nests an autoregressive model,
AR(p), as a special case. Alternatively, equations (8) and (9) together can be seen as a
restricted bivariate vector autoregressive process, wherein the SST anomaly is assumed to be
weakly exogenous to prices—an assumption that is hardly controversial and is supported by
empirical evidence (see, e.g., Brunner, 2002). Consistent with the exogeneity assumption—
which, moreover, serves as an identification condition in the bivariate system of equations—
the SST shocks and price innovations are uncorrelated, i.e., Cov(εt, υt) = 0.

Notably, a number of factors that are not included in the currently specified model are
correlated with commodity prices, and may also be correlated with the SST anomaly. These
omitted factors may be covariates or mediators, but are certainly not confounders. That is,
the omitted variables are either uncorrelated with SST (covariates) or are caused by SST
(mediators). Therefore, a causal mechanism, if any, from the SST anomaly to prices, is
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unidirectional, passing through a (set of) mediator(s). To the extent that the SST anomaly
is exogenous to mediators that are not included in the equation, the model does not suffer
from omitted variable issues (e.g., Edelstein and Kilian, 2009). As for covariates, it may
be that they spuriously correlate with the ENSO cycles. Given the frequency of the data
used, this could happen if, for example, a covariate has a seasonal pattern (as does the
measure of ENSO intensity). The currently applied modeling framework addresses this issue
by incorporating seasonal binary variables in the equations. Alternatively, the correlation
can take an “episodic” form, wherein an episode is a single event rather than an (irregularly)
repeated event. But this should not be a cause for concern in relation to long time series,
such as those applied in the current study.

Once the linear models, as specified in equations (8) and (9), are identified, we can turn
to linearity and parameter constancy testing using the auxiliary regression framework as
outlined above. The nonlinear model identification proceeds as follows: (i) Test the null
hypotheses of linearity and parameter constancy based on equation (7). If the null of pa-
rameter constancy is rejected, estimate a time-varying autoregressive (distributed lag) model
using a nonlinear least squares method. (ii) Test the null hypothesis of no remaining non-
linearity. If, at this point, the null hypothesis of remaining nonlinearity is rejected, estimate
a time-varying smooth transition autoregressive (distributed lag) model. Alternatively, if in
(i), we fail to reject the null hypothesis of parameter constancy, but reject the null hypoth-
esis of linearity, estimate a smooth transition autoregressive (distributed lag) model. See
Appendix figure A2 for an illustration of the model selection algorithm.

Following the aforementioned steps, one can identify and estimate a range of linear and
nonlinear models, which can be summarized by the following equation:

∆yt = δ0 +
11∑
s=1

δ0sDst +
q∑
j=0

η0jzt−j +
p−1∑
i=1

φ0i∆yt−i + ρ0yt−1 (10)

+
δ1 +

11∑
s=1

δ1sDst +
q∑
j=0

η1jzt−j +
p−1∑
i=1

φ1i∆yt−i + ρ1yt−1

G(t∗; γτ , τ)

+
δ2 +

11∑
s=1

δ2sDst +
q∑
j=0

η2jzt−j +
p−1∑
i=1

φ2i∆yt−i + ρ2yt−1

G(st; γc, c) + εt,

where G(t∗, γτ , τ) and G(st, γc, c) respectively are the logistic or exponential transition func-
tions of t∗ = t/T and st = zt−`, and 0 ≤ ` ≤ q. In the case of logistic transition functions,
the smoothness parameter, γ, is bounded by values of two and 100 (a value less than two
typically results in dynamics that can be indistinguishable from that of a linear model, while
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a value that is close to or greater than 100, results in an instantaneous switch between the
regimes, irrespective of the actual estimated value of the smoothness parameter), while for
exponential transition functions, γ is bounded by values of one and 10. As for the location
parameters, in the case of logistic functions, c is bounded by the 15th and 85th percentiles
of the transition variable, while in exponential functions, c is bounded by the 25th and
75th percentiles of the transition function. Equation (10) is a TV-STARDL representation,
within which is nested a STARDL model when G(t∗, γτ , τ) = 0, ∀ t, a TVARDL model when
G(st, γc, c) = 0, ∀ t, and an ARDL model when both transition functions are set to zero.

Note that the transition function, G(st, γc, c), is conditioned on the state of ENSO, rather
than on (a function of) lagged prices (as in, e.g., Ubilava, 2012; Ubilava and Holt, 2013).
Thus, the current specification allows for changes in ENSO intensity to manifest into com-
modity price dynamics through linear—(i.e., the distributed lag component)—as well as
nonlinear—i.e., the transition function—channels. Moreover, the time-varying component
allows for potentially smooth transition between the regimes as a result of structural change.
This modeling approach is similar to that applied by Enders and Holt (2012). But unlike
their modeling framework, the current specification also accounts for possible changes in
autoregressive as well as deterministic components of the price dynamics.

Empirical Results and Discussion

Using the strategy outlined in the previous section, it was found that the dynamics of the
SST anomalies are best characterized by a logistic STAR specification. As for the commodity
prices under consideration, a total of 12 nonlinear models were estimated. In seven of these
models there is evidence of linkages between SST anomalies and commodity prices (the other
five models identify structural changes in the price dynamics). Furthermore, in an additional
set of 12 commodities, there is an indication of linear linkages between ENSO and prices.
Table 2 summarizes the estimated models and the associated diagnostic test results.

Several general tendencies are apparent from these results. First, as expected, the prices
of agricultural commodities are most affected by SST anomalies. This is particularly true for
vegetable oils and oilseeds produced in the tropics. The prices of tropically grown beverages,
including coffee varieties and cocoa, are also affected by SST anomalies, as are fishmeal and
salmon prices. Notably, there is no evidence of any effect on the prices of cereal grains. There
are a couple of possible reasons for this. First, cereal grains are predominantly produced
in temperate regions, where the weather effects of ENSO are minimal (Hsiang and Meng,

14



Table 2: Selected Models and Residual Diagnostics

Commodity Model p q ` d k γ̂c ĉ γ̂τ τ̂ pt∗ pAC pARCH

Aluminum ARDL 2 1 0 16 0.253 0.226 <0.000
Barley AR 2 0 14 0.117 0.506 <0.000
Beef AR 3 1 14 0.507 0.532 0.592
Chicken LTVARDL 2 2 0 36 2.00

(1.16)
0.15
(0.21)

0.017 0.363 <0.000

Cocoa ARDL 3 0 1 15 0.541 0.570 0.016
Coconut Oil ARDL 2 5 1 19 0.610 0.967 0.422
Coffee (Arabica) ARDL 3 1 0 17 0.944 0.690 <0.000
Coffee (Robusta) ARDL 2 1 1 15 0.732 0.477 0.024
Copper AR 2 1 13 0.945 0.059 0.003
Copra ARDL 2 5 1 19 0.194 0.537 0.923
Cotton AR 2 0 14 0.859 0.255 <0.000
Fishmeal ARDL 2 0 1 14 0.126 0.144 0.072
Gold AR 2 1 13 0.013 0.163 0.055
Groundnut Oil AR 2 0 14 0.065 0.838 0.138
Hides LSTARDL 2 8 6 1 46 33.0

(33.5)
− 0.48

(0.03)
0.508 0.073 0.001

Lamb LTVAR 3 1 30 2.00
(1.28)

0.15
(0.21)

0.073 0.729 0.101

Lead AR 2 1 13 0.583 0.960 <0.000
Logs (Hard) LTVAR 2 0 30 100

(271)
0.22
(0.01)

0.116 0.066 <0.000

Logs (Soft) AR 2 1 13 0.204 0.553 0.003
Maize AR 2 0 14 0.936 0.790 0.827
Nickel AR 2 1 13 0.932 0.305 0.980
Olive Oil LTVAR 2 1 28 13.6

(10.6)
0.85
(0.02)

0.622 0.053 0.001

Palm Oil ARDL 5 6 0 24 0.383 0.975 0.551
Platinum AR 2 1 13 0.204 0.765 0.002
Pork LTVAR 1 0 28 3.66

(1.66)
0.27
(0.05)

0.775 0.221 <0.000

Rapeseed Oil ESTARDL 2 6 6 0 44 10.0
(4.53)

− 0.17
(0.03)

0.206 0.656 <0.000

Rice AR 3 0 15 0.060 0.985 <0.000
Salmon LTVARDL 2 4 1 38 3.72

(1.80)
0.78
(0.06)

0.766 0.445 0.079

Sawnwood (Hard) LSTARDL 3 7 5 1 46 89.9
(258)

0.91
(0.02)

0.227 0.149 0.458

Sawnwood (Soft) ESTARDL 3 0 0 1 32 1.00
(0.42)

− 0.04
(0.07)

0.007 0.292 0.107

Silver ARDL 2 0 1 14 0.044 0.372 0.035
Sorghum AR 2 0 14 0.159 0.845 0.928
Soybean Meal AR 2 0 14 0.366 0.389 0.082
Soybean Oil ARDL 3 6 1 21 0.129 0.971 0.063
Soybeans ARDL 2 1 0 16 0.453 0.276 0.048
Sugar AR 3 0 15 0.358 0.183 0.148
Sunflowerseed Oil LSTARDL 3 5 1 0 44 3.98

(1.98)
− 0.82

(0.20)
0.601 0.223 0.754

Tea LTVAR 2 0 30 3.71
(2.55)

0.38
(0.06)

0.673 0.222 0.937

Tin AR 3 1 14 0.713 0.673 0.542
Tobacco AR 2 1 13 1.000 0.159 <0.000
Wheat AR 2 1 13 0.797 0.235 0.001
Wool ARDL 2 1 1 15 0.232 0.112 0.531
Zinc AR 2 0 14 0.945 0.715 0.655

Note: p indicates the autoregressive lag length; q indicates the distributed lag length; ` denotes the delay
factor of the transition variable in a regime-dependent model; d indicates the order of integration of the
price series; k indicates the total number of estimated parameters; γ̂c, ĉ, γ̂τ , and τ̂ are estimated
smoothness and location parameters (values in parentheses are standard errors); pt∗ , pAC, and pARCH
denote probability values associated with hypotheses of (remaining) parameter nonconstancy, residual
autocorrelation, and autoregressive conditional heteroskedasticity.
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2015). Second, as a result of the regional diversification of crop production and the effects
of trade, losses in one region are more or less offset by gains in another region (see, e.g.,
Lybbert et al., 2014; Glauber and Miranda, 2016). While the modeling framework used in
this study cannot differentiate between factors that could mitigate price responses to SST
shocks, this finding points to the important observation that the prices of cereal grains are
not as responsive to ENSO shocks as commonly thought.

Of the nonagricultural commodities, timber and a small subset of metals appear to be
affected by SST anomalies. For timber, the impact is dynamically complex. That is, regime-
dependent nonlinearities are the underlying features of the dynamic process. Unlike agri-
cultural commodities, where the price effect is primarily supply-driven, for these industrial
commodities demand-side factors, in addition to supply-side shocks, such as production
disruptions resonated from ENSO-induced heat and drought, may also play a role in this
relationship.

Figure 3 shows the estimated transition functions associated with nonlinear models. In
the majority of cases, the transition between regimes appears to be gradual. In regime-
dependent models, because the transition variable is the SST anomaly, the estimated location
parameter, ĉ, indicates the point of inflection (or switching point) between the two ENSO
phases. The estimated smoothness parameter, γ̂c, indicates how quickly the model dynamics
change as one ENSO phase diminishes and the other begins to emerge. In time-varying
models, the estimated location parameter, τ̂ , identifies the point in time around which the
price dynamics have altered, whereas the smoothness parameter, γ̂τ defines the time frame
for the structural change. Table 2 presents these parameter estimates.

The estimated parameters of a nonlinear model, other than those of a transition func-
tion, cannot be interpreted directly. This is because nonlinear models are not invariant to
idiosyncratic shocks that may alter the underlying dynamics of a stochastic process. This
also implies that the so-called naïve extrapolation, which is used in linear models to gener-
ate impulse–response functions at horizons greater than one, yields biased results, and is not
valid in the case of nonlinear models. Analytical expressions of impulse–response functions
are infeasible for horizons greater than one. To circumvent this issue, Koop et al. (1996) pro-
posed a numerical approximation technique that produces a generalized impulse–response
function (GIR) for a given history and shock:

πx (h, υ, ωt−1) = E (xt+h|υ, ωt−1)− E (xt+h|ωt−1) , h = 0, 1, . . . , (11)

where πx (h, υ, ωt−1) is a GIR for variable x at horizon h; ωt−1 ∈ Ωt−1 denotes the history,
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Figure 3: Estimated transition functions of ENSO and price equations

Note: These plots feature the SST anomaly (◦C) and the commodity price series (natural logarithm), along
with the associated estimated transition functions. The SST anomaly and the commodity price series are
depicted by solid gray lines; the regime-dependent transition functions, i.e., G(st; γc, c), are depicted by
dashed red lines; and the time-varying transition functions, i.e., G(t∗; γτ , τ), are depicted by blue dots.
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i.e., available information at a time when a forecast is made, and υ ∈ Υ denotes an impulse,
i.e., the realization of an initial shock, from the distribution of shocks under consideration;
E is an expectation operator. To the extent that υ and ωt−1 are realizations of the random
variables Υ and Ωt−1, the GIR given by πx (h, υ, ωt−1), which is the difference between two
random variables, also represents a realization of the random variable:

πx (h,Υ,Ωt−1) = E (xt+h|Υ,Ωt−1)− E (xt+h|Ωt−1) , h = 0, 1, . . . . (12)

In principle, Ωt−1 can contain every history from the available index set, but a subset of
histories, Ω′t−1 ⊆ Ωt−1, can also be applied to obtain conditional expectations. For example,
if one is interested in price dynamics during El Niño conditions, only the histories associated
with this phase are sampled. A similar logic applies to Υ. For example, one may be interested
in price dynamics after a shock that exceeds one or two standard deviations of the available
set of impulses.

The Price Effects of SST Anomalies across the ENSO Regimes

I apply a bootstrap resampling algorithm to approximate GIRs.4 To illustrate the regime-
dependent nonlinearities/asymmetries, two subsets of histories, each of size 50, are sampled
from the El Niño and La Niña regimes, as depicted in figure 2. For a randomly sampled his-
tory from each of these subsets, 100 bootstrap projections of the SST anomaly are computed
with and without an initial shock at h = 0. This initial shock is randomly sampled from a
uniform distribution bounded by 0.5σ̂ν and 1.5σ̂ν , where σ̂ν is the residual standard deviation
from the estimated STAR model of ENSO. By using a distribution of shocks—rather than
a single value—the GIRs account for nonlinearities in the underlying autoregressive process,
so that for h > 0 the distribution of the GIRs may have an asymmetric or multimodal
form. At each horizon h > 0, the aforementioned projections are disturbed by idiosyn-
cratic shocks (randomly sampled from residuals of the estimated STAR model of ENSO).
The averages of these bootstrap projections form the conditional expectations of the SST
anomaly, E (zt+h|υ, ωt−1) and E (zt+h|ωt−1), at each horizon. The difference between these
two expectations yields a realization of the GIR, πz (h, υ, ωt−1).

The aforementioned conditional expectations of the SST anomaly are then incorporated
into the commodity price equations to generate their GIRs (using an approach similar to

4See Koop et al. (1996) for more details on generalized impulse–response functions. See the Appendix for
the specific algorithm used in this analysis.
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that outlined above, but with innovations randomly sampled from residuals of the estimated
model of commodity prices). A total of 4000 GIRs are generated for the SST anomaly and
prices. Finally, because prices are modeled as first-differences, their GIRs are integrated over
the length of the horizon to obtain the effect of ENSO shocks on log-levels of real commodity
prices. That is:

πy (h, υ, ωt−1) =
h∑
s=0

π∆y (s, υ, ωt−1) . (13)

As noted above, the characteristic features of GIRs from regime-dependent nonlinear
models are asymmetry and multimodality. For multimodality in particular, the conventional
confidence intervals may not be informative. Instead, the HDRs of Hyndman (1995, 1996)
are better suited to illustrating these distributional peculiarities.5 Here, I consider the 50%
and 90% HDRs to compactly illustrate the distribution of GIRs for ENSO and commodity
prices.

5The HDR, or more precisely a 100 (1− α) % HDR, is the subset, R (fα), of the sample space of the
random variable X, such that R (fα) = {x : f(x) ≥ fα}, where f(x) is the density function of X, and fα is
the largest constant that satisfies P [X ∈ R (fα)] ≥ 1− α. For further details, see Hyndman (1996). For an
illustration, see the Appendix.
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Figure 4: Regime-dependent asymmetries in SST and selected commodity prices

Note: These plots feature 50% (darker shade) and 90% (lighter shade) highest density regions (HDRs) of
the generalized impulse–response functions (GIRs) at horizon h, ∀ h = 0, 1, . . . , 24. In each plot, the GIRs
are associated with an average one standard deviation SST shock during the El Niño regime (top panel,
shades of red) and the La Niña regime (bottom panel, shades of blue).
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Figure 4: continued from the previous page
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Figure 4: continued from the previous page

These HDRs represent distributions of GIRs that result from an unexpected shock to
SST anomalies where the shock is, on average, equivalent to one standard deviation of the
residuals of the estimated ENSO model.6 As for magnitude of impulses and responses, the

6Note that these distributions of impulse–responses are not due to parameter uncertainty, but rather
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mean value of SST shocks used in this analysis is approximately 0.18◦C; the price responses
are given in relative terms (i.e., on a log-scale). Several general observations stem from
this figure. First, for the vast majority of the commodities under consideration, a positive
SST shock tends to increase prices. Second, the effect is more pronounced in response to
shocks during an El Niño regime, and is predominantly driven by more amplified GIRs
of SST anomalies in this regime compared with those during a La Niña regime. A one
standard deviation positive SST shock results in a two-to-ten percent increase in the prices
of vegetable oils and oilseeds in the long run. This effect is more apparent for vegetable oils
produced in the tropics. The price effect is in the range of one-to-three percent for most other
affected agricultural commodities. The majority of nonagricultural commodities, with the
exception of timber varieties, aluminum and silver, are unaffected by SST deviations. With
regard to the aforementioned exceptions, for timber, the effect is nonlinear in that it varies
across ENSO regimes. In the case of the metals, the effect appears to be economically and
statistically negligible. This is revisited below in the context of forecast accuracy assessment.

The Price Effects of SST Anomalies Within a Calendar Year and Over Time

For further insights, I now turn to history-specific GIRs. First, consider subsets of histories
during the May–June–July (MJJ) trimester and the November–December–January (NDJ)
trimester. The former is the onset of the ENSO cycle, while the latter represents the peak
of the ENSO season. Additional features of interest emerge from these GIRs (see Figure 5).
First, seasonal discrepancies in the ENSO effect are apparent. The price impact is larger for
shocks that occur during the MJJ trimester compared with those that occur during the NDJ
trimester. This is expected for agricultural commodities with an annual production cycle.
But in general, this finding implies that the information content of SST anomalies is greater
when an ENSO event starts to form, rather than when the event has already realized. Second,
seasonal differences are also apparent for commodities that are characterized by linear ARDL
models, suggesting that a key driver of seasonal discrepancies is the nonlinear ENSO cycle.
For example, a one standard deviation shock that occurs during the MJJ trimester results in
more amplified SST dynamics during the following six months, than a similar shock occurring
during the NDJ trimester, which is soon followed by the “spring barrier.”

they illustrate history- and shock-specific discrepancies in the nonlinear model. That is, in the absence of
nonlinearities (i.e., if both the ENSO equation as well as the price equations were given by linear models),
for any given shock the GIRs across different histories would follow exactly the same path, while for an array
of symmetrically distributed shocks, the GIRs would also be distributed symmetrically about a single mode.
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Figure 5: Seasonal asymmetries in SST and selected commodity prices

Note: These plots feature 50% (darker shade) and 90% (lighter shade) highest density regions (HDRs) of
the generalized impulse–response functions (GIRs) at horizon h, ∀ h = 0, 1, . . . , 24. In each plot, the GIRs
are associated with an average one standard deviation SST shock during the MJJ trimester (top panel,
shades of red) and the NDJ trimester (bottom panel, shades of blue).
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Figure 5: continued from the previous page
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Figure 5: continued from the previous page

To better illustrate the changes in the dynamics of these commodity prices characterized
by time-varying parameters—i.e., salmon and chicken—I generate and compare GIRs based
on histories sampled before and after the estimated structural change. These GIRs are illus-
trated in figure 6. Since the early-to-mid-2000s, salmon prices have become more responsive
to ENSO shocks. Notably, this period coincides with stronger correlations between the cost
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of input to the price of output in the salmon industry (Asche and Oglend, 2016). So, to the
extent that fishmeal is a key factor in salmon production, the relationship between ENSO
and fishmeal prices appears to be playing an important role in salmon price behavior. In
the case of chicken, the structural change has reversed the price impact of ENSO shocks. It
is difficult to pinpoint the reason(s) for this effect. Nonetheless, the role of ENSO appears
to be negligible in relation to out-of-sample predictability of chicken prices (see the section
for more details). Hence, chicken price dynamics belong to the same discussion as those of
other meat products. That is, the applied modeling framework reveals the gradual struc-
tural change in meat industries, which began in the early 1990s, but there is little evidence
to suggest that ENSO has had any influence on the movements of these prices. This is not
surprising, given the negligible impact of SST shocks on cereal grain prices.
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Figure 6: Time-varying dynamics of selected commodity prices

Note: These plots feature 50% (darker shade) and 90% (lighter shade) highest density regions (HDRs) of
the generalized impulse–response functions (GIRs) at horizon, h, for all h = 0, 1, . . . , 24. In each plot, the
GIRs are associated with an average one standard deviation SST shock during the 1981–1985 period (top
panel, shades of red) and the 2010–2014 period (bottom panel, shades of blue).

Forecasting Commodity Prices Using SST Anomalies

The foregoing exercise relies on in-sample goodness-of-fit measures, e.g., the Akaike Infor-
mation Criterion, to identify the most suitable model. However, a better in-sample fit does
not necessarily guarantee improved out-of-sample predictability. More to the point, even
if the SST anomalies appear to be Granger causing price movements based on in-sample
statistics, their role in the out-of-sample predictability of prices may be limited or statisti-
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cally insignificant. In turn, out-of-sample predictability, or forecasting, is at the core of time
series analysis. In this section, I undertake a pseudo-forecasting exercise to obtain insights
into commodity price predictability in relation to SST anomalies. In particular, I apply the
so-called rolling window approach to generate a sequence of pseudo-forecasts from linear or
nonlinear ARDL models, i.e., those with the SST anomaly in the information set, and their
parsimonious AR variants, i.e., the information set that excludes the SST anomaly.

To begin, consider an h-step-ahead point forecast, given by:

ŷt+h|t = f
(
Ft; θ̂t

)
, (14)

where f(·) is the functional form of the estimated model, θ̂t is a set of parameter estimates,
and Ft is the information set available at the time of forecast. Thus, for unrestricted models,
Ft = (yt−1, . . . , yt−p, zt, . . . , zt−q)′, while for restricted models, Ft = (yt−1, . . . , yt−p)′. The
goal is to compare the two forecasts, one of which is based on the information set with the
SST anomaly, while the other excludes the SST anomaly.

As per convention, I assess forecast accuracy assuming quadratic loss. To that end,
the out-of-sample measure of the “departure from the perfect fit,” i.e., the root mean square
forecast error (RMSFE), is comparable to the usual in-sample measure, the residual standard
deviation. Let êt+h = yt+h− ŷt+h|t be the forecast error at horizon h, where yt+h is the actual
realization of the variable of interest in the forecast period. Then the associated RMSFE is
given by:

RMSFE =

√√√√ 1
P

T−h∑
t=R

ê2
t+h, (15)

where P is the total number of out-of-sample forecasts, and R denotes the estimation window
size, i.e., the subset of observations used to obtain a set of parameter estimates, such that
R+P = T − h, where T denotes the total sample size. If a loss differential between the two
models, of which the former nests the latter, is statistically significantly different from zero,
the SST anomaly will be said to cause commodity prices in the Granger sense.7

Here, I set R ≈ 0.75T . Thus, the first estimation window starts in January 1981 and
ends in December 2007, and the associated forecast window spans the period from Jan-

7The most popular metric for the assessment of forecast accuracy is the Diebold and Mariano (1995) (DM)
statistic, which was designed to test the predictive accuracy of two non-nested models. However, when one
of the competing models nests another, the standard asymptotic critical values are no longer applicable
(Clark and McCracken, 2001). This issue can be circumvented by incorporating an adjustment factor into
the forecast accuracy statistic as per Clark and West (2007). See Clark and McCracken (2001); Clark and
West (2007), and references therein, for further details.
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uary 2008 to December 2009. The successive estimation and forecast windows are rolled
over by one month, resulting in a total of 108 h-step-ahead forecasts. For each commodity
price under consideration—i.e., those that are caused by SST anomalies based on in-sample
examination—the specification identified in the modelling stage of this exercise is fitted in
each rolling window. That is, the model type, as well as the autoregressive and distributed
lag orders, are maintained throughout the rolling windows, but new set of parameters are
estimated in each rolling window. To the extent that the forecasting exercise makes use
of some out-of-sample information, a more accurate description of this procedure would be
quasi-out-of-sample forecasting (see, e.g., Rothman et al., 2001).

Note that for one-step-ahead forecasts, or for any h-step-ahead forecast where the un-
derlying model specification is linear, a naïve, or so-called skeleton extrapolation will suffice.
But in the case of nonlinear models, the skeleton extrapolation will yield biased forecasts
for horizons greater than one, for reasons similar to those discussed above in the context
of impulse–response functions. To circumvent this issue, I simulate 1000 projections using
bootstrapped residuals of the estimated model within a given rolling window,8 and then take
the average of these projections to approximate an h-step-ahead forecast for all h > 1. Using
these forecasts and actual realizations of commodity prices, I obtain the relative forecast
accuracy measures, and their statistical significance, which I present in table 3.

These results confirm some of the previously reported findings by emphasizing the rel-
evance of SST anomalies in predicting the prices of some oilseeds and vegetable oils. The
economically meaningful and statistically significant effect is particularly apparent in the in-
termediate term. Of the remaining agricultural commodities, SST anomalies help to improve
the predictability of Robusta coffee prices, but this effect is not statistically significant. For
the other agricultural commodities, the informational content of SST anomalies is not suffi-
cient to offer improved out-of-sample predictability, despite the favorable in-sample fit. No-
tably, beyond the agricultural sector, SST anomalies maintain relevance in the intermediate-
term predictability of aluminum prices, but are unable to aid in predicting the prices of
other commodities, such as timber. Another important observation here is that SST anoma-
lies cannot improve the predictability of those commodity prices that are characterized by
nonlinear dynamics with regard to the ENSO regimes. This is not surprising, as out-of-
sample Granger causality between SST anomalies and these commodity prices is likely of
episodic nature. For example, SST anomalies may help to forecast prices only in extreme

8The approach is similar to that used to generate expected forecast path (without an initial shock) in
generalized impulse–response functions. I shall thus refrain from further details here. But a reader may refer
to Teräsvirta et al. (2010) for an in-depth discussion on this matter.
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Table 3: Out-of-Sample Relative Predictive Accuracy of Commodity Prices

Commodity h = 1 h = 2 h = 3 h = 6 h = 12 h = 18 h = 24

Aluminum 1.01 1.02 1.02 1.01 0.96* 0.92** 0.98
Chicken 1.01 1.01 1.01 1.00 1.01 0.99 0.99
Cocoa 1.01 1.01 1.02 1.02 1.01 1.01 1.02
Coconut Oil 0.97** 0.95** 0.92** 0.88** 0.83*** 0.83*** 0.88**

Coffee (Arabica) 0.99 1.00 1.00 0.99 0.99 0.99 1.00
Coffee (Robusta) 1.01 1.03 1.04 1.08 1.01 0.95 0.96
Copra 0.97** 0.95** 0.93** 0.90** 0.84*** 0.84*** 0.89**

Fishmeal 0.99* 0.99* 0.98* 0.99 1.01 1.03 1.09
Hides 0.98 1.02 1.03 1.07 1.11 1.06 1.01
Palm Oil 1.00 0.99 0.98 0.96 0.99 1.04 1.10
Rapeseed Oil 1.10 1.10 1.13 1.17 1.08 1.15 1.16
Salmon 1.00 1.01 1.02 1.03 0.99 0.99 1.00
Sawnwood (Hard) 1.11 1.20 1.22 1.17 1.17 1.16 1.13
Sawnwood (Soft) 1.02 1.05 1.04 1.06 1.05 1.10 1.10
Silver 1.01 1.01 1.02 1.02 1.01 1.00 1.01
Soybean Oil 1.00 1.01 1.00 0.98 0.92** 0.91** 0.95*

Soybeans 1.01 1.01 1.02 1.02 1.00 1.00 1.01
Sunflowerseed Oil 1.01 1.02 1.06 1.13 1.11 1.00 0.90
Wool 1.00 1.00 1.00 1.01 1.01 1.00 1.00

Note: the table entries are the ratios of the RMSFE from two competing models, where the restricted
model serves as denominator (so a value of less than one suggests a better out-of-sample fit by a model
with the SST anomaly). ***, **, and *denote statistical significance at α = 0.01, 0.05, and 0.10 levels, based
on Clark and West (2007) critical values.

ENSO events. But the phase-specific relative forecast accuracy measures are not presented
here, given the relatively small number of periods that were classified as El Niño or La Niña
regimes during the 2008–2016 forecasting period.

Conclusion

The literature on commodity price behavior has provided consensus on some of their well-
established characteristics. Commodity price series are found to be highly persistent (Cashin
et al., 2000; Ghoshray, 2013), with occasional spikes, and possibly nonlinear dynamics
(Tomek, 2000; Cashin et al., 2002; Enders and Holt, 2012). Even so, the question of why
prices move as they do continues to challenge economists. In this study, I address the afore-
mentioned question by examining the extent to which an exogenous climatic factor, ENSO,
may Granger cause primary commodity price movement. I do this by applying a nonlinear
modeling framework to better approximate complex linkages between SST anomalies and
an extensive list of primary commodity prices, and then testing the predictability of prices
in relation to this climate phenomenon in a pseudo-forecasting environment.
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I find that SST anomalies facilitate price movements in selected primary commodities,
particularly those in the agricultural sector. But the ability of this climate phenomenon to
“genuinely” forecast prices is limited to just a few commodities. Vegetable oils and protein
meals—particularly those produced in the western region of the Pacific—represent a key
group of commodities that respond most robustly to ENSO shocks. For a range of other
commodities, such as beverages and timber, SST anomalies contribute to improved in-sample
fit of the data, but this fit does not translate into more accurate forecasts. For timber in
particular, the observed relationship between SST anomalies and prices is episodic, i.e., the
effect is apparent when nonlinearities in the ENSO–price linkage are accounted for. Thus,
lack of overall predictability can be attributed to possibly episodic out-of-sample causality.
Contrary to expectations, I found no evidence of any price effect of SST anomalies for cereal
grains. This may be the result of the limited exposure of temperate regions to ENSO shocks,
as well as the north–south diversification of these crops, and the resultant buffer provided
by intra-annual supply responses and international trade.

The findings of this study add considerably to existing knowledge of the ENSO–price
nexus, and carry important socio-economic implications, particularly for developing nations.
These counties are major producers of many of the primary commodities considered in this
study, and their economic growth has historically been affected by price movements in these
commodities (Deaton, 1999; Chinn and Coibion, 2014). Therefore, the ENSO–price linkage
can be seen as an important channel through which climate shocks can affect the well-being
of citizens in these lower income countries. In conclusion, disentangling the supply- and
demand-side channels through which ENSO may impact price movements is a worthwhile
subject for future research, and one for which this study offers important insights.
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Appendix

A1 Generalized Impulse–Responses: A Bootstrap Resampling Algorithm

1. Estimate the parameters of a suitable model; denote the estimated parameters by θ̂,
and the residuals by ε̂t.

2. Identify a subset of histories, Ωt−1, that satisfy a condition of interest (e.g., coinciding
with a strong El Niño occurrence).

3. Identify a subset of initial shocks, Υ, that satisfy a condition of interest (e.g., exceeding
one standard deviation of the estimated residuals).

4. Sample (randomly with replacement) a history, ωt−1, and an initial shock, υ, where
ωt−1 ∈ Ωt−1 and υ ∈ Υ, obtain a GIR as follows:

(a) Generate a set of idiosyncratic disturbances, {εit+h : h = 0, 1, . . .}, by randomly
sampling (with replacement) from {ε̂t : t = 1, . . . , T}.

(b) Construct a forecast path (without the initial shock) iteratively:

xit+h = f(xit+h−1, x
i
t+h−2, . . . ; θ̂) + εit+h.

(c) Construct another forecast path (with the initial shock) iteratively:

xit+h|υ = f(xit+h−1|υ, x
i
t+h−2|υ, . . . ; θ̂) + εit+h, where εit = υ.

(d) Repeat steps 4a – 4c B times, where B is an integer denoting the total number of
bootstrap iterations, and obtain the averages at each horizon for each of the two
forecast paths:

E(xt+h|ωt−1) = B−1
B∑
i=1

xit+h,

E(xt+h|υ, ωt−1) = B−1
B∑
i=1

xit+h|υ.

(e) Take the difference between the two averages to obtain an estimate of GIR:

π̂x (h, υ, ωt−1) = E(xt+h|υ, ωt−1)− E(xt+h|ωt−1).

5. Repeat step 4 a sufficiently large number of times to generate empirical distributions
of the GIR at each horizon.
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Table A1: Unit Root Test Results

Commodity ADFy ADF∆y ZAy ZA∆y KPSSy KPSS∆y

Aluminum -3.51 -10.23 -4.18 -10.59 2.83 0.08
Barley -3.28 -13.23 -4.07 -13.37 2.91 0.03
Beef -2.40 -11.63 -4.44 -11.96 3.82 0.20
Chicken -2.57 -10.94 -5.38 -11.06 8.76 0.04
Cocoa -2.82 -10.33 -4.41 -10.63 2.77 0.19
Coconut Oil -2.82 -9.87 -3.82 -10.02 0.94 0.16
Coffee (Arabica) -3.36 -10.43 -4.21 -10.70 3.03 0.07
Coffee (Robusta) -2.47 -10.15 -3.51 -10.46 6.80 0.18
Copper -1.89 -11.59 -4.20 -11.78 5.77 0.13
Copra -2.73 -9.56 -3.65 -9.68 1.02 0.17
Cotton -3.06 -9.49 -4.86 -9.76 7.71 0.05
Fishmeal -2.35 -11.27 -3.95 -11.66 2.99 0.21
Gold -1.12 -12.27 -3.97 -12.87 4.45 0.62
Groundnut Oil -3.66 -9.69 -4.45 -9.88 0.81 0.04
Hard Logs -3.24 -11.00 -5.12 -11.28 1.87 0.04
Hard Sawnwood -1.97 -10.46 -5.37 -10.87 3.68 0.07
Hides -2.41 -12.71 -4.49 -13.10 5.09 0.03
Lamb -2.70 -10.07 -4.73 -10.44 4.32 0.04
Lead -1.92 -12.03 -4.71 -12.57 5.60 0.26
Maize -3.20 -10.67 -4.81 -10.83 1.74 0.04
Nickel -2.68 -10.73 -3.50 -11.03 3.00 0.05
Olive Oil -2.28 -11.44 -3.59 -11.77 1.66 0.06
Palm Oil -3.64 -7.73 -4.57 -7.88 0.54 0.08
Platinum -2.00 -11.34 -4.04 -11.72 6.56 0.21
Pork -2.58 -15.07 -6.27 -15.29 15.38 0.02
Rapeseed Oil -3.12 -12.50 -4.07 -12.65 1.35 0.06
Rice -3.18 -10.83 -4.18 -11.13 1.64 0.08
Salmon -2.46 -12.34 -4.24 -12.54 10.50 0.15
Silver -2.17 -12.77 -3.98 -13.27 3.32 0.60
Soft Logs -1.67 -14.12 -3.56 -14.51 2.91 0.07
Soft Sawnwood -2.05 -12.45 -4.37 -12.86 2.55 0.05
Sorghum -3.58 -11.38 -5.15 -11.53 1.70 0.04
Soybean Meal -3.19 -11.00 -4.96 -11.12 1.83 0.07
Soybean Oil -2.85 -9.09 -3.76 -9.25 0.80 0.09
Soybeans -3.19 -12.26 -5.18 -12.48 2.04 0.06
Sugar -4.25 -10.34 -4.93 -10.97 0.62 0.10
Sunflowerseed Oil -3.69 -10.15 -5.11 -10.28 1.02 0.03
Tea -4.23 -12.93 -5.69 -13.02 4.53 0.04
Tin -2.35 -9.29 -4.41 -9.75 2.37 0.40
Tobacco -2.23 -9.56 -3.36 -9.81 4.62 0.13
Wheat -2.76 -11.29 -3.73 -11.59 1.81 0.07
Wool -2.44 -10.96 -3.77 -11.13 2.14 0.19
Zinc -2.88 -10.63 -3.87 -10.85 1.20 0.05

Note: Augmented Dickey–Fuller (ADF), Zivot–Andrews (ZA), and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests are
applied to levels and first-differences of log-transformed real commodity prices. The 5% critical vales for ADF, ZA, and KPSS
are: −2.87, −4.80, and 0.46, respectively.
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Table A2: Selected models using alternative measures of ENSO intensity

SST SOI
Commodity Model p q ` AICc Model p q ` AICc

Aluminum ARDL 2 1 0.211 ARDL 2 0 0.207
Barley AR 2 0.585 LTVARDL 2 8 0.558
Beef AR 3 -0.539 LSTARDL 3 2 0 -0.540
Chicken LTVARDL 2 2 -1.835 LTVARDL 2 2 -1.836
Cocoa ARDL 3 0 0.355 ARDL 3 0 0.354
Coconut Oil ARDL 2 5 0.810 ARDL 2 6 0.840
Coffee (Arabica) ARDL 3 1 0.885 AR 3 0.890
Coffee (Robusta) ARDL 2 1 0.623 ARDL 2 0 0.623
Copper AR 2 0.335 AR 2 0.335
Copra ARDL 2 5 0.743 ARDL 2 6 0.759
Cotton AR 2 -0.021 AR 2 -0.021
Fishmeal ARDL 2 0 -0.053 LTVARDL 2 8 -0.077
Gold AR 2 -0.397 LTVARDL 2 0 -0.409
Groundnut Oil AR 2 0.087 LTVARDL 2 6 -0.002
Hides LSTARDL 2 8 6 0.430 AR 2 0.441
Lamb LTVAR 3 -0.410 LTVARDL 3 1 -0.435
Lead AR 2 0.706 AR 2 0.706
Logs (Hard) LTVAR 2 0.264 LTVAR 2 0.264
Logs (Soft) AR 2 0.591 AR 2 0.591
Maize AR 2 0.235 AR 2 0.235
Nickel AR 2 0.963 AR 2 0.963
Olive Oil LTVAR 2 -0.074 LTVAR 2 -0.074
Palm Oil ARDL 5 6 0.609 ARDL 5 6 0.628
Platinum AR 2 0.181 LSTARDL 2 7 6 0.167
Pork LTVAR 1 1.412 LTVAR 1 1.412
Rapeseed Oil ESTARDL 2 6 6 0.911 LTVARDL 2 6 0.790
Rice AR 3 0.247 ESTARDL 3 1 1 0.225
Salmon LTVARDL 2 4 0.187 LTVAR 2 0.199
Sawnwood (Hard) LSTARDL 3 7 5 -0.068 AR 3 -0.018
Sawnwood (Soft) ESTARDL 3 0 0 0.598 LSTARDL 3 5 2 0.622
Silver ARDL 2 0 0.651 LSTARDL 2 0 0 0.637
Sorghum AR 2 0.392 AR 2 0.392
Soybean Meal AR 2 0.180 AR 2 0.180
Soybean Oil ARDL 3 6 0.192 ARDL 3 6 0.205
Soybeans ARDL 2 1 0.000 AR 2 0.001
Sugar AR 3 1.079 AR 3 1.079
Sunflowerseed Oil LSTARDL 3 5 1 0.641 LSTARDL 3 1 1 0.561
Tea LTVAR 2 0.781 LTVAR 2 0.781
Tin AR 3 0.202 AR 3 0.202
Tobacco AR 2 -1.878 ARDL 2 10 -1.896
Wheat AR 2 0.261 AR 2 0.261
Wool ARDL 2 1 -0.041 AR 2 -0.040
Zinc AR 2 0.420 AR 2 0.420

Note: the estimated models are given by equations (9) and (10), or their restricted (i.e., without a measure
of ENSO intensity in the equation) variants; p indicates the autoregressive lag length; q indicates the
distributed lag length; ` denotes the delay factor of the transition variable in a nonlinear model. AICc is
the small sample adjusted Akaike information criterion.
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Figure A1: SST and SOI anomalies and ENSO events

Note: the black curve depicts the sea surface temperature (SST) deviations from centered 30-year base
periods, in the Nino3.4 region; the gray bars depict the Southern Oscillation index (SOI), calculated from
standardized Tahiti and Darwin air-pressures, relative to the 1981–2010 base period; the SOI is multiplied
by negative one to facilitate comparison with SST; regions shaded with (upward-sloping) red lines
represent the El Niño events, and regions shaded with (downward-sloping) blue lines represent the La Niña
events; the El Niño and La Niña events are identified based on the Oceanic Niño Index (ONI), which is a
three-month running mean of the SST anomaly.
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Step 1
Select the autoregressive lag order
(p) using the bottom-up sequential
testing approach

Step 1′

Estimate an AR(p) model;
obtain AICAR(p)

Step 2
Test the null of parameter
constancy in the AR(p) model

Step 2′

Estimate a TVAR(p) model;
obtain AICTVAR(p)

Step 3
Estimate ARDL(p,q) models, for all
{q = 0, 1, . . . , qmax};
obtain AICARDL(p,q)

Step 4
Test the null of parameter
constancy in each of the
ARDL(p,q) models

Step 4′

Estimate TVARDL(p,q) model(s);
obtain AICTVARDL(p,q)

Step 5
Test the null of linearity in each of
the ARDL(p,q) models

Step 6
Test the null of no remaining
nonlinearity in the TVARDL(p,q)
model(s)

Step 5′

Estimate STARDL(p,q) model(s);
obtain AICSTARDL(p,q)

Step 6′

Estimate TV-STARDL(p,q)
model(s); obtain AICTV-STARDL(p,q)

Step 7
Select the model from
{1′, 2′, 4′, 5′, 6′} that yields the
smallest AIC

H0 : ϕ 6= 0

H0 : ϕ = 0

H0 : ϕ 6= 0

H0 : ϕ = 0

H0 : ϕ 6= 0 H0 : ϕ 6= 0

Figure A2: Model selection algorithm: a graphical illustration
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Figure A3: Estimated transition functions of time-varying price equations

Note: These plots feature commodity price series (in gray), as well as the estimated transition functions,
G(t∗; γτ , τ), depicted by blue dots.
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Figure A4: Highest density regions: an illustration
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