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Abstract
How are commodity prices related to the El Niño Southern Oscillation (ENSO) cycle, and has
this relationship altered over time? Despite overwhelming evidence suggesting an important
role played by the ENSO in global commodity production, the relationship between this climate
anomaly and prices is not a trivial corollary, and requires careful investigation. To account
for potentially complex dynamics in the ENSO–price relationship, this study applies a time–
varying smooth transition autoregressive (TV–STAR) modeling framework to monthly series of
the sea surface temperature anomalies in the Niño3.4 region and 46 primary commodity prices
spanning the January 1982 – December 2015 period. The findings suggest apparent linkages
between ENSO shocks and a set of agricultural commodities, as well as forestry commodities
and metals. An unexpected deviation in ENSO results in two-to-five percentage point change in
prices, while up to 30 percent of price variation in the selected commodities can be attributed
to ENSO shocks in the intermediate and long run. Importantly, there are benefits to regime–
dependent modeling, which in some instances facilitates unveiling causal linkages that may
have been camouflaged in a linear setting. Several commodity prices also reveal evidence of
structural change, and in those instances, the ENSO effect appears to have been mitigated over
time, suggesting some adaptive response to the known economic consequences of this climate
anomaly.
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1 Introduction

In the wake of arguably one of the strongest El Niño occurrences in recent history, news concerning

anticipated global food shortage and subsequent commodity price spikes have headlined popular

media and intensified academic discussions (e.g., Carlson, 2015; Craymer, 2015; Meng and Hsiang,

2015). The concern is not unfounded, as some of the most devastating weather events – such

as droughts, hurricanes, and tsunamis – have been historically associated with deviations in the

El Niño Southern Oscillation (ENSO) cycle (Pielke Jr and Landsea, 1999). The ENSO cycle

features El Niño – and its counterpart, La Niña – as extreme phases. These anomalous deviations

of the considered climate phenomenon are assessed more scrupulously now than ever, plausibly as

a result of their improved predictability (e.g., Ludescher et al., 2014), and due to a better general

understanding of their global economic consequences (e.g., Cashin et al., 2015). While the effect

of ENSO shocks on world commodity production is well–evidenced in the literature (e.g., Handler

and Handler, 1983; Iizumi et al., 2014), nontrivial linkages between this climate anomaly and a

broad range of primary commodity prices remain to be better understood. In that respect, this

study aims to address two important questions: (i) what are the consequences of ENSO shocks on

dynamic behavior of commodity prices? and (ii) has the ENSO–price relationship changed over the

course of recent history?

The question of the potential linkages between the ENSO anomalies and commodity prices pri-

marily stems from a causal mechanism involving the production effect of this climate phenomenon.

ENSO anomalies can largely dictate weather conditions in many parts of the world (e.g., Ropelewski

and Halpert, 1987; Stone et al., 1996; Barlow et al., 2001), increasing probabilities of droughts or

floods, as illustrated in Figure 1. Several features of the ENSO effect – also documented in the

literature – are notable. First, not only tangent to the Pacific (where ENSO occurs), but also

distant regions are impacted, owing to the presence of the so called teleconnections, which radiate

the ENSO impulses around the globe (Rasmusson, 1991; Stone et al., 1996). Second, regions within

the tropical band are affected more than other regions (see, also, Hsiang and Meng, 2015). Third,

the weather effects of the two counterpart anomalies are not exactly the mirror images of each other

(e.g., Hoerling et al., 1997; Zhang et al., 2014).
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The observed climatology can have implications for the ENSO–price relationship, and the way

this relationship is modeled. First of all, many primary commodities are produced in the areas that

are directly affected by ENSO anomalies. If the weather effects are synchronized due to ENSO –

e.g., simultaneous droughts in different regions during the El Niño event – the global price effect is

likely to be amplified. Alternatively, if there are offsetting weather effects in different commodity

producing regions, the global price effect of ENSO shocks may be mitigated, despite its apparent

effect on production in specific geographic areas. In addition, asymmetries in the weather effect

of ENSO may also manifest into asymmetries in price responses to ENSO shocks. That is, for

example, La Niña shocks may not necessarily result in price decrease even if El Niño shocks cause

price increase of a particular commodity.

Modeling asymmetries in commodity price responses to ENSO shocks is at core of the current

analysis. There are reasons to believe that ENSO effect on price dynamics may be nonlinear. First,

as noted above, it is likely that one extreme – e.g., El Niño – can disturb market conditions in

different ways, as compared to its counterpart – La Niña. If so, price dynamics during the two

extreme regimes may be different, i.e., asymmetric. Moreover, economic agents may react differently

to news related to one or the other extreme events (for example, El Niño is a better known and more

“talked about” anomaly of the two). Second, it is reasonable to assume, that small deviations in

ENSO may have an effect that is disproportional to its large deviations. That is, observed weather

patterns associated with ENSO events are likely to be more apparent during the most extreme

episodes of this climate anomaly. As noted above, economic agents are more likely to react to news

suggesting strong El Niño or La Niña, as compared to their moderate manifestations.

The foregoing discussion suggests that there may be several regimes of commodity price dy-

namics, and switches between these regimes may be conditioned on the status of ENSO. Moreover,

these switches may be gradual – rather than instantaneous – because of heterogeneity among eco-

nomic agents who likely face different transaction costs, or possess different ability or willingness to

process ENSO–related information. So, there may be a continuum of thresholds at which a switch

between regimes happens. Thus, a generalized version of a threshold model – capable of capturing

smooth transition between the regimes – is a framework that will be suitable in the current analysis.
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In addition to the regime–dependent nonlinearities, the question of structural change in the

ENSO–price relationship has gained relevance in accord with an improved overall understanding

of this climate anomaly and its economic consequences. There are at least two reasons that could

have facilitated potentially evolving dynamics between these two variables. First, the increasingly

improved knowledge of the phenomenon may be resulting in a different reaction from economic

agents now than before. Second, factors other than ENSO (e.g., technological change, policy

effect, etc.), have changed dynamics of primary commodity prices during past several decades

(Enders and Holt, 2012), which may have altered causal linkages between ENSO and prices as well.

Whatever may be the cause, it is vital to account for parameter non-constancy in the regression

setting, to facilitate accurate identification of the relationship between ENSO and commodity prices.

Moreover, the aforementioned structural change is likely to be gradual, rather than abrupt, given

the nature of technological change and adaptation.

To address potential parameter non-constancies, and regime–dependent nonlinearities in the

ENSO–price relationship, this study adopts a time–varying smooth transition autoregressive (TV–

STAR) model (e.g., Lundbergh et al., 2003). A TV–STAR can be seen as a generalized framework

that nests an array of different nonlinear models, as well as a basic linear autoregression, as special

cases. Because an exact nature of the ENSO–price relationship is a priori unknown, and moreover

given that these relationships are likely to vary across different commodity groups, the aforemen-

tioned flexibility afforded by the TV–STAR framework is a particularly attractive feature of the

modeling exercise. It is worth noting that the TV–STAR platform has already been successfully

applied to analyze commodity price behavior Holt and Craig (2006); Balagtas and Holt (2009);

Hood and Dorfman (2015), albeit in different contexts.

This study offers several contributions to the literature. First, this research incorporates a

comprehensive set of individual spot prices to gain insights of the ENSO effect across different

commodity categories. Second, this study addresses nonlinearities and structural change in the

ENSO–commodity price relationship in a TV–STAR framework, thus, allowing for possibility of

regime–dependent behavior in commodity price dynamics, where regimes can be a nonlinear func-

tion of time or ENSO anomalies. In so doing, this research sets up a modeling framework that
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can be extended as a forecasting exercise, to examine nonlinear Granger causality in a potentially

changing environment (e.g., Pesaran and Timmermann, 2004; Giacomini and Rossi, 2010). In ad-

dition, this study applies well–established and newly introduced methods – such as the generalized

impulse response functions of Koop et al. (1996), and the generalized forecast error variance decom-

position of Lanne and Nyberg (2016) – to illustrate the role of ENSO in commodity price dynamics

and their variability, particularly due to nonlinear modeling.

2 Nonlinear Modeling and Testing

The econometric framework of the current analysis is designed to account for possible structural

change and regime–dependent nonlinearities in the commodity price dynamics, particularly in re-

sponse to ENSO shocks. While there may be several options for nonlinear modeling, a conveniently

fitting approach for the current analysis is the TV–STAR modeling framework. The concept of

smooth transition regressions was pioneered by Bacon and Watts (1971). Subsequently, Chan and

Tong (1986) were first to introduce its time series variant – the smooth threshold autoregressive

model, which later became popular under the smooth transition autoregressive label, or simply

STAR. In a series of papers, Luukkonen et al. (1988); Teräsvirta and Anderson (1992); Teräsvirta

(1994); Eitrheim and Teräsvirta (1996) conceptualized the formal modeling and testing frameworks

of the STAR model.

STAR models, and their variations, quickly gained popularity, and have been widely applied

to examine asymmetric dynamics in macroeconomic variables (e.g., Teräsvirta, 1995; Sarantis,

1999; Skalin and Teräsvirta, 2002). More recently, this modeling framework has been applied

to investigate nonlinear features of agricultural production and prices (e.g., Craig and Holt, 2008;

Balagtas and Holt, 2009), climate variables, including ENSO (Hall et al., 2001; Ubilava and Helmers,

2013), and their effect commodity prices (Ubilava, 2012; Ubilava and Holt, 2013). Despite this

popularity, a brief description of the econometric specification and the testing framework of the

STAR–type models is in order.
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2.1 A Smooth Transition Autoregressive Model

Consider an additive nonlinear (i.e., piecewise linear) univariate time series model:

yt = φ′0wt +
K−1∑
k=1

φ′kwtGk (sk,t;θk) + εt, t = 1, . . . , T, (1)

where yt is the realization of the dependent variable at time t; wt = (1, yt−1, . . . , yt−p)′ is the

vector of explanatory variables, where p is the autoregressive order; φk = (φk0, φk1, . . . , φkp)′,

k = 0, . . . ,K − 1, are the vectors of associated parameters, where K denotes the total number of

regimes in the model. In addition, the vector of explanatory variables, wt, may also include a set

of deterministic or exogenous variables, but we omit those now for the sake of brevity. Gk (sk,t;θk)

is a transition function, by construction bounded between 0 and 1, where sk,t is the transition

variable, and θk is the set of parameters associated with (and defining the type or the curvature

of) the transition function (as discussed below). Finally, εt ∼ iid(0, σ2
ε) is the white noise process.

A set of restrictions can transform equation (1) to well–known autoregressive models. For

example, if Gk (sk,t;θk) = 0, ∀k, equation (1) becomes a basic linear autoregression:

yt = φ′wt + εt. (2)

If K = 2 and G (st;θ) = {0, 1}, i.e., the transition function is an indicator function, equation (1)

becomes a threshold autoregression (TAR) of Tong and Lim (1980) and Tsay (1989).

Alternatively, if K = 2 and G (st;θ) ∈ [0, 1], i.e., the transition function takes on a continuum

of values between 0 and 1, equation (1) becomes a smooth transition autoregression (STAR) of

Luukkonen et al. (1988) and Teräsvirta (1994):

yt = φ′0wt + φ′1wtG (st; γ, c) + εt, (3)

where G (st; γ, c) can take several possible forms. Two commonly applied transition functions are
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logistic and exponential – respectively forming the LSTAR and ESTAR models – given by:

G(l) (st; γ, c) =
{

1 + exp
[
γ

(
st − c
σs

)]}−1
(4)

G(e) (st; γ, c) =
{

1− exp
[
γ

(
st − c
σs

)2
]}

(5)

In these smooth transition functions, the parameter vector consists of the smoothness parameter

γ > 0, and the centrality parameter, c, the latter usually constrained by [κst , 1− κst ], where κst is

the truncation factor, usually set to the 15th percentile of the transition variable.

A practical benefit of working with STAR models is that they embed previously defined AR

and TAR models as the special cases. For example, the LSTAR converges to the linear AR model

when γ → 0, and to the TAR model when γ →∞. Furthermore, if the transition variable is set to

be a function of time, e.g., t∗ = t/T , equation (3) will turn into a time–varying autoregression.

Finally, if K = 3, that is, if a model contains two transition functions, of which one is a function

of time, then we have a TV–STAR model as follows:

yt = φ′0wt + φ′1wtG (st; γc, c) + φ′2wtG (t∗; γτ , τ) + εt, (6)

where, similar to c, τ ∈ [κt∗ , 1− κt∗ ]; the rest are as defined above.

2.2 Testing Linearity and Parameter Constancy in Smooth Transition Models

The question of whether a time–varying or a regime–dependent nonlinearity is truly an underlying

feature of the data, is a testable hypothesis. The adequate hypothesis, i.e., H0 : γ = 0, cannot

be examined directly, however, due to unidentified nuisance parameters (Davies, 1977, 1987) in

the nonlinear model specification. To illustrate the point, consider a two–regime STAR model as

in equation (3), where st = yt−d, 0 < d ≤ p. It can be reduced to a linear AR model either by

imposing a restriction on the transition parameter, i.e. γ = 0, or by imposing a restriction on the

autoregressive parameters associated with the additive regime of the model, i.e. φ11 = φ12 = . . . =

φ1p = 0. The standard test statistics, therefore, are no longer applicable. But the issue can be

circumvented by approximating the transition function about γ = 0, using a third order Taylor
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series expansion (Luukkonen et al., 1988; Teräsvirta, 1994, for details, see). The result is a testable

auxiliary regression:

yt = ϕ0 +
3∑
j=0
ϕ′jvts

j
t + ξt, (7)

where vt = (yt−1, . . . , yt−p)′, ϕj = (ϕj1, . . . , ϕjp)′, and ξt combines the original error term, εt,

and the approximation error resulting from the Taylor series expansion. The linearity test is now

equivalent to testing the null hypothesis of H ′0: ϕij = 0, ∀ i = 1, . . . , 3, j = 1, . . . p. Additionally,

tests against LSTAR and ESTAR models are also embedded in the testing framework. In particular,

H
′
03: ϕ3j = 0 and H ′01: ϕ1j = 0 | ϕkj = 0, ∀ k = 2, 3; j = 1, . . . , p, are tests against LSTAR; while

H
′
02: ϕ2j = 0 | ϕ3j = 0, j = 1, . . . , p, is a test against ESTAR. The suitable model is selected based

on probability values of the above hypotheses (e.g., Teräsvirta, 1994).

Several features, associated with the nonlinear model selection, need to be noted. First, the

transition variable, st, is often a priori unknown. In such instances, a set of candidate transition

variables are considered, and the most appropriate one is selected based on probability values

associated with the null hypothesis of linearity. In conjunction with the aforementioned, one may

also estimate several candidate models, and decide on the suitable transition variable and the type

of nonlinear function based on the model fit (e.g., Akaike Information Criterion), as well as the

remaining nonlinearity test results. Second, the parameter constancy test is a special case of the

linearity test, where st is substituted by t∗ in equation (7). Typically, parameter nonconstancy is

addressed, i.e., a TVAR is estimated where applicable, before moving on to testing and estimating

a STAR or a TV–STAR. Finally, if a TV–STAR is a suspect, the so called specific–to–general

approach can be implemented, which involves estimating the multiple–regime model (e.g., van Dijk

and Franses, 1999), where both time–varying and regime–dependent components are incorporated

as transition functions (see, for example, Lundbergh et al., 2003; Holt and Craig, 2006).

3 Data

This study uses monthly series of the ENSO index and the primary commodity prices spanning

the period from January 1982 to December 2015. Two better known indices depicting ENSO
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cycles are the pressure-based Southern Oscillation Index (SOI), and the sea-surface temperature

(SST) measure. Different previous studies have used either or both of these indices (e.g., Brunner,

2002; Ubilava and Holt, 2013; Cashin et al., 2015), but the measure of SST anomalies derived

from the observations collected in the Niño 3.4 region – a rectangular area between 5◦N− 5◦S and

170◦W−120◦W in the equatorial Pacific – has become increasingly more common in the climatology

literature. So, this study will also apply this anomaly, which is a monthly deviation from the average

historic measure in that month during the 1981 – 2010 base period, and is tabulated by the Climate

Prediction Center at the National Oceanic and Atmospheric Administration. A positive deviation,

i.e., an unusual warming of the SST, is indicative of the El Niño phase, while a negative deviation,

i.e., an unusual cooling of the SST, points to the La Niña episode. From here forward, the term

ENSO will be used interchangeably and synonymously to the sea surface temperature anomaly in

the Niño 3.4 region.

Primary commodity price series are collected from the World Bank and the International Mon-

etary Fund publications. These are spot prices (FOB or CIF), and are indicative of world prices of

the commodities. This study considers several important commodity groups, which includes grains

and cereals, forestry, farms and fishery, vegetable oils and meals, and industrial and rare metals.

See Table 1 for the complete list and a brief description of commodities used in this study. For the

purposes of the analysis, these nominal sport prices are deflated using the U.S. producer price index

(PPI), collected from the U.S. Bureau of Labor, and then transformed to natural logarithms. From

here forward, prices will refer the natural logarithm of real commodity prices, unless otherwise

stated.

4 Model Selection and Estimation

The building block of most nonlinear models, and certainly the ones considered in this study, is a

basic linear specification. Let yt denote the I(1) price of a commodity in period t,1 and let zt denote

the I(0) ENSO measure in the same period.2 Moreover, similar to Brunner (2002), let ENSO be
1The commodity-specific subscript is omitted for simplicity.
2The assumptions concerning the degrees of integration are supported by the Augmented Dickey Fuller (ADF)

and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The test results are available upon request.
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weakly exogenous to prices. The following linear regression setting is then a suitable starting point

of the analysis:

∆yt = αy(t) + β′xt + θ′zt + εt, (8)

where αy(t) is a deterministic component, which is a linear function intercept and seasonal binary

variables; xt = (yt−1,∆yt−1, . . . ,∆yt−p+1)′; zt = (zt, zt−1, . . . , zt−q)′, where p and q are selected

using Akaike Information Criterion (AIC), and subject to no serial correlation in εt, which is

assumed to be white noise, i.e., εt ∼ iid
(
0, σ2

ε

)
; and the rest are parameter vectors to be estimated.

In turn, the ENSO variable is also assumed to follow an autoregressive process:

zt = αz(t) + η′zt−1 + νt, (9)

where αz(t) is a deterministic component as before; zt−1 = (zt−1, . . . , zt−r)′, where again, r is

selected based on AIC, and subject to no serial correlation, so that νt ∼ iid
(
0, σ2

ν

)
; and the rest

are as defined above.

Once the linear models, as specified in equations (8) and (9), are identified, we turn to linearity

and parameter constancy testing, using the auxiliary regression framework outlined in Section 2,

and letting st = zt−d, where 1 ≤ d ≤ r. In the case of the ENSO equation, the model is assumed to

be nonlinear in all of its components. Thus, if the null of linearity is rejected, the following STAR

variant of equation (9) is estimated:

zt = αz0(t) + η′0zt−1 +
[
αz1(t) + η′1zt−1

]
G(st; γc, c) + νt (10)

In the case of the price equation, the model is assumed to have a time–varying autoregressive

component along with an intercept, and be nonlinear in distributed lags of ENSO. This is a relatively

more parsimonious specification of the TV–STAR model, primarily motivated from potential issues

associated with identification of the parameters in different regimes. Similar to Enders and Holt

(2012), the currently specified time–varying component allows for potentially smooth transition

between the regimes due to the structural change, but in addition to shifts in mean, this study also
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accounts for changes in short–term dynamics of commodity prices. Also, unlike Ubilava (2012);

Ubilava and Holt (2013), the regime–dependent nonlinearity here is conditioned on the state of

ENSO, rather than the state (or a linear combination) of lagged prices.

The model selection algorithm proceeds as follows. First, we test the null hypotheses of linearity

and parameter constancy based on equation (7). If the null of parameter constancy is rejected, we

estimate a time–varying autoregressive (TVAR) model using a nonlinear least squares method, and

then test the null of no remaining nonlinearity. If we also reject the null of remaining nonlinearity,

we estimate a TV–STAR model. Alternatively, if in the first stage, we fail to reject the null

of parameter constancy, but reject the null of linearity, we estimate a STAR model. Given the

aforementioned decision tree, we can ultimately identify and estimate one of the four potential

models: (i) an autoregressive distributed lag model; (ii) a time–varying autoregressive distributed

lag model; (iii) an autoregressive smooth transition distributed lag model; and (iv) a time–varying

autoregressive smooth transition distributed lag model, respectively given by equation (8), and the

following set of equations:

∆yt = αy0(t) + β′0yt−1 +
[
αy1(t) + β′1yt−1

]
G(t∗; γτ , τ) + θ′zt + εt (11)

∆yt = αy0(t) + β′0yt−1 + θ′0zt + θ′1ztG(st; γc, c) + εt (12)

∆yt = αy0(t) + β′0yt−1 +
[
αy1(t) + β′1yt−1

]
G(t∗; γτ , τ) + θ′0zt + θ′1ztG(st; γc, c) + εt, (13)

where G(t∗, γτ , τ) and G(st, γc, c) respectively are logistic functions of t∗ = t/T and st = zt−d,

where the delay factor, d ≤ q, is a non-negative integer; the rest are as defined before.

5 The Estimation Results, Interpretation, and Discussion

To summarize, in 20 out of the considered 46 price series there is evidence of causal linkages with

ENSO. That is, a contemporaneous or lagged realizations of the ENSO variable belong to the

commodity price equation, as suggested by the AIC. Such a relationship, in some instances, is

better identified when the regime–dependent nonlinearity in the ENSO effect is accounted for. In

particular, in eight of the price equations a nonlinear specification appears to facilitate the better

10



fit of the data. Moreover, in five of the aforementioned 20 price equations with the ENSO variable,

and an additional twelve price equations without the ENSO variable on the right-hand-side, we

observe a structural change of some sort (i.e., instantaneous or gradual) during the time span in

consideration. The price series, and the estimated transition functions of those commodities where

ENSO is incorporated in the equation, are featured in Figure 2. In majority of the cases, transition

between the regimes appears to be gradual, i.e., the smooth transition modeling seems to be an

appropriate nonlinear modeling framework vis-á-vis instantaneous, threshold–like autoregressive

models.3 To better understand the dynamics of the estimated equations we turn to impulse–

response analysis.

5.1 Generalized Impulse–Responses and Error Variance Decomposition

The nonlinear model dynamics depend on a set of factors, such as the direction and the intensity

of initial shocks, i.e., impulses; the information set prior to these shocks, i.e., histories; and the

idiosyncratic disturbances that occur throughout the forecast horizon. This implies that the so

called naïve extrapolation – which is applicable in linear models to generate impulse–response

functions – will yield biased results, and is not valid in the case of nonlinear models. To circumvent

this issue, Koop et al. (1996) proposed a numerical approximation technique that produces the

generalized impulse–response functions (GIRs) as follows:

πx (h, υt, ωt−1) = E (xt+h|υt, ωt−1)− E (xt+h|ωt−1) , h = 1, 2, . . . , (14)

where πx (h, υt, ωt−1) is a GIR of a variable x, at a horizon h, and where ωt−1 ∈ Ωt−1 denotes a point

in time with initial conditions from the set of histories under consideration, and υt ∈ Υt denotes an

impulse, i.e., the realization of an initial shock, from the distribution of shocks under consideration;

finally, E is an expectation operator. Assuming that υt, ωt−1 and {xt} are realizations from the

same stochastic process, πx (h, υt, ωt−1) itself – which is the difference between two random variables
3The estimated smoothness and location parameters, along with their standard errors, are not presented here, but

are available upon request.
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– represents a realization of the random variable (Koop et al., 1996), given by:

πx (h,Υt,Ωt−1) = E (xt+h|Υt,Ωt−1)− E (xt+h|Ωt−1) , (15)

The aforementioned framework of the generalized impulse–response analysis lends itself natu-

rally to the recently proposed generalized forecast error variance decomposition (GFEVD) of Lanne

and Nyberg (2016). This method, in essence, generalizes the approach put forward by Pesaran and

Shin (1998), and augments it to a nonlinear multivariate framework. In particular, a realization of

the GFEVD at horizon h, for a given history ωt−1, is given by:

λkij,ωt−1 =
∑k
h=0 πi (h, υjt, ωt−1)2∑k

h=0 πi (h, υ1t, ωt−1)2 +
∑k
h=0 πi (h, υ2t, ωt−1)2 , (16)

where j and i denote impulse and response variables, and the rest are as defined above. Thus,

by construction, λkij,ωt−1 ≥ 0, and
∑
j λ

k
ij,ωt−1 = 1. As such, λkij,ωt−1 represents a relative impact

of variable j in relation to the cumulative impact of all variables in consideration. Similar to

πx (h, υt, ωt−1), λhij,ωt−1 is also realization of a random variable, conditioned on histories and shocks.

In practice, λhij,ωt−1 are integrated across histories and shocks to obtain the GFEVDs. See Lanne

and Nyberg (2016) for details of the GFEVD computation.

5.2 Bootstrap Resampling and Scenarios for the Impulse–Response Analysis

In principle, Ωt−1 can contain every history from the available index set, but a subset of histories,

Ω′t−1 ⊆ Ωt−1, is often applied to obtain conditional expectations. For example, if we are interested

in price dynamics during the El Niño conditions, only the histories associated with this phase are

sampled. Or, if we are interested in price dynamics after a structural change, only the histories

associated with the most recent regime of the index set are sampled.

This study considers a total of five scenarios. First, to illustrate the overall effect, a sample of

histories is randomly selected from the available index set. Further, to compare dynamics between

the two extreme ENSO regimes, subsets of histories are sampled from periods associated with

El Niño or La Niña conditions only. Finally, to visualize dynamics before and after the structural
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change, histories are randomly sampled from the respective periods of the index set. In each given

scenario, a bootstrap resampling algorithm is applied first to the ENSO equation, and subsequently

to the price equation, to obtain the GIRs. Shocks, or impulses, are drawn from the distribution

of residuals from the ENSO equation. In particular, a total of 80 shocks, exceeding one standard

deviation of residuals from the ENSO equation, are randomly sampled (with replacement). To

assess sign–specific asymmetries, both positive and negative ENSO shocks are considered. That is,

absolute values of the sampled impulses are respectively added to or subtracted from the realization

of ENSO at the zero horizon. Finally, 200 vectors of idiosyncratic surprises are randomly sampled

(with replacement) from the estimated ENSO model, where the length of the vector is set to

24 (i.e., two years). Thus, for each history–shock combination, 200 bootstrap extrapolates are

generated with and without an initial shock. These bootstrap extrapolates are then averaged at

each horizon, yielding conditional expectations, with and without an initial shock, as in the right-

hand-side of equation (14), yielding the GIR of ENSO. The aforementioned conditional expectations

of ENSO are subsequently incorporated in the price equation, where as previously, 200 bootstrap

price extrapolates are generated using idiosyncratic surprises that are randomly sampled (with

replacement) from the estimated price equation. So, a total of 4,800 history–shock specific GIRs are

obtained by taking a difference between the conditional expectations of prices, with and without the

ENSO shocks, yielding the distribution of GIRs across histories and shocks for positive and negative

ENSO shocks, and each scenario considered. Note that prices are modeled as first-differences, so as

the final step, obtained GIRs are integrated to recover the effect of the ENSO shocks on log levels

of real commodity prices.

Figure 3 illustrates the median, and the 5th and 95th percentiles of the calculated GIRs based on

randomly sampled histories (unconditional on time period or the ENSO regime). Several features

of interest are revealed from this analysis. On many occasions, the ENSO shocks appear to have

long-term impact on commodity prices. This is primarily due to persistence in prices, as the ENSO

shock itself tends to dissolve in approximately a one–year period. Moreover, different commodity

groups are affected differently by ENSO shocks, both in terms of the magnitude and the direction of

the effect. Finally, in several commodities, asymmetries are apparent, that is, the impulse responses
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due to El Niño and La Niña shocks of equivalent magnitude are not mirror images of each other.

To better illustrate the regime–dependent asymmetries we turn to GIRs generated from subsets

of histories associated with El Niño or La Niña conditions only. The resulted GIRs are illustrated

in Figure 4. First of all, the difference in ENSO dynamics between the two regimes is notable. The

ENSO tends to oscillate but dissolve relatively soon after the shocks during the El Niño regime, but

is characterized by a more persistent behavior during the La Niña regime. As for the commodities,

aluminum prices respond to ENSO shocks during El Niño conditions but not otherwise. On the

other hand, cocoa prices respond to ENSO shocks during La Niña phase only. Prices of hard logs

and sunflower-seed oils also – which did not respond statistically significantly when histories were

not conditioned on ENSO regimes – appear to be impacted by ENSO shocks when history–specific

nonlinearities are accounted for.

The foregoing GIRs do not account for the observed structural change in a number of com-

modities. That is, histories are randomly sampled from the index set, which includes time periods

before and after the structural change. To examine differences in commodity price dynamics due

to the structural change, we sample the first 60 histories of the available index set – i.e., the period

before a structural change – and the last 60 histories of the index set – i.e., the period after a

structural change. The resulted GIRs are illustrated in Figure 5. In all three commodities, the

effect of ENSO shocks appear to be less amplified and tend to dissolve after the structural change,

in comparison with the larger in magnitude and more persistent effect observed prior to the struc-

tural change. Such finding points to a possible ongoing adaptation with respect to the effect of

ENSO phenomenon. For example, it might be that fishmeal consumers adjust their inventories in

anticipation of El Niño, thus mitigating the long–run effect of its repercussions.

5.3 The Topology of Commodity Price Responses to ENSO Shocks

Agricultural commodities, expectedly, belong to a key category, prices of which are most affected

by ENSO. Within this category, prices of vegetable oils are most responsive to surprises in this

climate phenomenon. On average, an unanticipated positive shock to ENSO, i.e., an El Niño–like

event, results in up to five percentage point increase in prices of major vegetable oils, such as
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palm oil and soybean oil. The effect is particularly apparent after the subsequent one–year period.

Sunflower-seed oil prices behave similarly, although the effect is only apparent during the El Niño

conditions. Approximately 15 percent of the vegetable oil price variation after a one–year period,

and up to a third of the price variation after a two–year period, can be attributed to ENSO shocks,

as suggested by GFEVDs featured in Table 3.

Fishmeal prices increase by up to three percent, and salmon prices increase by approximately two

percent, following an El Niño shock – an observation that is hardly controversial, given the supply–

side effect of this climate anomaly. Notably, prices of a close substitute to fishmeal – soybean

meal – decrease by approximately two percent after an El Niño shock, which manifests into an

amplified fishmeal–to–soybean meal price ratio dynamics in response to ENSO shocks (Ubilava,

2014). Beef prices, on the other hand, decrease after El Niño, although this change is only of a half

of a percentage point in magnitude.

Among the considered grains and cereals, wheat prices increase by two percentage points after

a negative ENSO shock, i.e., a La Niña–like event. This effect is consistent with an expectation, as

the two largest wheat exporters – U.S. and Canada – tend to experience droughts during La Niña

episodes. Soybean prices, on the other hand, reveal curious dynamics in response to ENSO shocks.

Initially, they resemble a pattern similar to wheat prices, i.e., up to one percent decrease in prices

during first year following an El Niño shock, but subsequently, perhaps due to vertical price trans-

mission stemming from the vegetable oil market, the effect reverts, resulting in up to one percent

price increase starting approximately one year after the shock. Up to 25 percent of wheat price

variation, but only 10–15 percent of soybean price variation, can be attributed to ENSO during

the one–to–two year period after the shock. Notably, prices of other cereals, e.g., barley, maize,

and sorghum, do not reveal evidence of causal linkages with ENSO. This finding points to the

mitigating effect of regional diversification of crop production, suggesting that losses in one set of

regions are offset by gains in another set of regions.

This study considers two varieties of coffee: the Robusta coffee, which is typically produced in

Southeast Asia, and the Arabica coffee, which is predominantly harvested in Central and South

American countries. Findings suggest that only the Arabica variety responds statistically signifi-
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cantly to ENSO shocks. In particular, a La Niña shock appears to result in more than two percent

increase in Arabica coffee prices. This finding is in accord with evidence that the price spread of the

two coffee varieties tends to widen after La Niña episodes. Approximately 15 percent of Arabica

coffee price variation can be attributed to ENSO shocks.

Forestry is another category of commodities prices of which appear to be affected by ENSO

shocks. Prices of soft logs increase by approximately one percent after an El Niño shock. Price

dynamics of hard logs, in turn, reveal a clear regime–dependency. During El Niño conditions, an

unexpected El Niño shock results in an approximately two percent increase in prices. Alternatively,

during La Niña conditions, prices of hard logs initially increase by more than one percent after a

La Niña shock, but subsequently decrease by up to two percent. In terms of variance decomposition,

approximately 15–25 percent of price variation of these commodities can be attributed to ENSO

shocks during the one–to–two year horizon.

A number of metal prices also respond to ENSO shocks, and in a number of cases the effect is

of the regime–dependent nature. For example, prices of aluminum increase by approximately three

percent after an El Niño shock, but this effect is evident during the El Niño conditions only. Prices

of tin also increase by almost two percent in the intermediate–run following an El Niño shock during

the El Niño conditions. On the other hand, prices of tin increase by more than two percent following

a La Niña shock during the La Niña conditions. Twenty–to–thirty percent of these metal price

variation at the one–to–two year horizon can be attributed to ENSO shocks. Notably, the ENSO

effect on gold prices, while statistically insignificant is not economically meaningful. For example,

following El Niño, gold prices appear to increase statistically significantly by approximately a tenth

of a percentage point.

6 Conclusion

Literature on commodity price behavior is not thin. Thus far, there is a fair bit of consensus on

some of the well–established characteristic features of commodity prices. For example, commodity

price series are found to be highly persistent (Cashin et al., 2000; Ghoshray, 2013), with occasional

spikes, and possibly nonlinear dynamics (Tomek, 2000; Cashin et al., 2002; Enders and Holt, 2012).
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Even so, the question about “why prices move as they do?” is still lingering among economists.

This study is an attempt to address the aforementioned question by examining the extent to which

an exogenous climatic factor – the El Niño Southern Oscillation – is causing the primary commodity

price movement. In so doing, this study builds upon and contributes to the previous research in

two main directions. First, it investigates the relationship between ENSO and an extensive list of

primary commodity prices. Second, this study allows and accounts for the possibility of a structural

change and the ENSO–related nonlinearities in commodity price dynamics.

Findings of this research suggest that ENSO plays an economically important and statistically

significant role in price behavior of an array of commodities, and this effect extends beyond the

anticipated agricultural sector. Much of the effect is likely supply driven, be that due to shortage of

water for irrigation of field crops, or hydro-energy generation for its use in mining sector. Vegetable

oils and protein meals represent the key group of commodities that respond to ENSO shocks – the

finding that is consistent with several previous studies (Brunner, 2002; Laosuthi and Selover, 2007;

Ubilava and Holt, 2013). Among other affected food and agricultural commodities are wheat,

soybeans, beef, salmon, and coffee. Forestry commodities as well as metals are also impacted by

ENSO shocks, and the effect is particularly apparent when nonlinearities are accounted for. The

effect of an ENSO surprise, which is measured as the 0.3◦C deviation in the SST on average, results

in one–to–five percent change in commodity prices, which also translates to 15–30 percent price

variation attributable to ENSO shocks in the intermediate run.

Findings of this study are largely in agreement with previous research, but also add considerable

knowledge to the existing literature. In a number of the considered cases, the time–varying regime-

dependent modelling facilitates the identification of the causal linkages between ENSO and prices,

which appear to be camouflaged in a linear setting. In that respect, results of this study have

important policy implications, suggesting that care is needed to avoid possible faulty conclusions

due to linear modelling, if the relationship is, in fact, nonlinear. In addition, these findings carry

important welfare implications, especially for developing nations, as their exports, terms of trade,

and the economic growth have historically relied on primary commodities (Deaton, 1999; Chinn

and Coibion, 2014). This can be an important research direction motivated by this analysis.
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Tables

Table 1: Description and Origin of the Considered Commodity Prices

Commodity Notation Description and Origin

Aluminum ALM 99.5% minimum purity, LME spot price, CIF UK ports
Arabicas (coffee) ARB International Coffee Organization New York cash price, ex-dock New York, (c/lb)
Beef BEF Australian and New Zealand 85% lean fores, CIF U.S. import price, (c/lb)
Bananas BNN Central America and Ecuador, FOB U.S. ports
Barley BRL Canadian No.1 Western Barley, spot price
Cocoa CCA International Cocoa Organization cash price, CIF US and European ports
Coconut Oil CCN Philippines/Indonesia, in bulk, CIF Rotterdam
Chicken CHK Whole bird spot price, Ready-to-cook, whole, iced, Georgia docks, (c/lb)
Copper CPP Grade A cathode, LME spot price, CIF European ports
Copra CPR Philippines/Indonesia, in bulk, CIF NW European ports
Cotton CTN Cotton Outlook ’A Index’, Middling 1-3/32 inch staple, CIF Liverpool, (c/lb)
Fishmeal FSH Peru pellets, 65% Protein, CIF
Gold GLD 99.5% fine, London afternoon fixing, average of daily rates
Groundnut Oil GRN Any origin, CIF Rotterdam
Hides HID Heavy native steers, over 53 pounds, wholesale dealer’s price, FOB Chicago, (c/lb)
Hard Logs HRD Best quality Malaysian Meranti, import price Japan, ($/m3)
Hard Sawnwood HSW Dark Red Meranti, select and better quality, C&F U.K port, ($/m3)
Lead LED 99.97% pure, LME spot price, CIF European Ports
Lamb LMB Frozen carcass, Smithfield London, (c/lb)
Maize MZE U.S. No.2 Yellow, FOB Gulf of Mexico
Nickel NCK Melting grade, LME spot price, CIF European ports
Oranges ORN Miscellaneous, CIF French import price
Olive Oil OLV Extra virgin less than 1% free fatty acid, ex-tanker price U.K.
Palm Oil PLM Malaysia/Indonesia, in Bulk, 5% FFA, CIF NW European Ports
Platinum PLT 99.9% refined, London afternoon fixing
Peanuts (groundnuts) PNT 40/50 count per ounce, CIF Argentina
Pork PRK 51-52% lean Hogs, U.S. price (c/lb)
Robustas (coffee) RBS International Coffee Organization New York cash price, ex-dock New York, (c/lb)
Rice RCE Thailand 5% broken milled white rice, FOB Bangkok
Rapeseed Oil RPS Crude, FOB Rotterdam
Soybean Meal SBM Argentine 45/46% extraction (after January 1990); U.S. 44%, CIF Rotterdam
Soybeans SBN U.S. No.2 Yellow, CIF Rotterdam
Soybean Oil SBO Any origin, crude, FOB ex-mill Netherlands
Soft Logs SFT Average export price, U.S. for Douglas Fir, ($/m3)
Sugar SGR ISA daily price, raw, FOB and stowed at greater Caribbean Ports ($/kg)
Salmon SLM Farm Bred Norwegian Salmon, export price, ($/kg)
Silver SLV 99.9% refined, London afternoon fixing
Sunflowerseed Oil SNF European Union, FOB NW European ports
Sorghum SRG U.S. No.2 milo yellow, FOB Gulf ports
Soft Sawnwood SSW Average export price, U.S. for Douglas Fir, ($/m3)
Tobacco TBC Any origin, unmanufactured, general import, CIF U.S.
Tea TEA Kenya auction price (after July 1998); London auctions, CIF U.K. warehouses, (c/kg)
Tin TIN Standard grade, LME spot price
Wheat WHT U.S. No.1 Hard Red Winter, Ordinary Protein, FOB Gulf of Mexico
Wool WOL Coarse, 23 micron, Australian Wool Exchange spot quote (c/kg)
Zinc ZNC High grade 98% pure

Note: the commodity prices are denominated in US$ per metric ton, unless otherwise specified. The series were sourced from
the World Bank and the International Monetary Fund online database.
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Table 2: Model Selection and Residual Diagnostics

Commodity p q Model d pt∗ pAC pARCH

ALM 6 2 STAR 0 0.260 0.352 0.000
ARB 3 1 AR 0.450 0.594 0.000
BEF 3 2 STAR 1 0.160 0.705 0.586
BNN 5 TVAR 0.009 0.904 0.007
BRL 2 TVAR 0.740 0.214 0.004
CCA 3 0 STAR 0 0.043 0.754 0.226
CCN 5 5 AR 0.150 0.482 0.522
CHK 2 TVAR 0.013 0.718 0.000
CPP 6 AR 0.240 0.392 0.006
CPR 5 5 AR 0.036 0.307 0.833
CTN 4 AR 0.210 0.553 0.000
FSH 6 0 TVAR 0.850 0.879 0.350
GLD 3 0 TVAR 0.260 0.486 0.011
GRN 2 AR 0.250 0.744 0.120
HID 6 TVAR 0.450 0.523 0.058
HRD 6 1 STAR 1 0.710 0.570 0.000
HSW 3 AR 0.280 0.840 0.000
LED 2 TVAR 0.300 0.672 0.000
LMB 2 TVAR 0.170 0.656 0.004
MZE 2 AR 0.520 0.904 0.782
NCK 2 1 STAR 0 0.530 0.244 0.838
OLV 3 1 TV–STAR 1 0.000 0.412 0.000
ORN 6 AR 0.260 0.126 0.056
PLM 5 6 AR 0.400 0.361 0.808
PLT 2 AR 0.260 0.660 0.012
PNT 6 TVAR 0.046 0.358 0.000
PRK 3 AR 0.130 0.608 0.013
RBS 2 AR 0.180 0.313 0.031
RCE 3 AR 0.460 0.970 0.000
RPS 2 TVAR 0.000 0.614 0.000
SBM 4 5 AR 0.430 0.279 0.196
SBN 2 5 AR 0.064 0.663 0.142
SBO 5 6 AR 0.200 0.723 0.246
SFT 2 3 TVAR 0.004 0.784 0.006
SGR 2 AR 0.720 0.251 0.346
SLM 6 0 AR 0.170 0.055 0.001
SLV 6 TVAR 0.270 0.008 0.000
SNF 4 4 STAR 4 0.900 0.241 0.306
SRG 2 AR 0.390 0.838 0.998
SSW 3 TVAR 0.004 0.304 0.000
TBC 5 TVAR 0.320 0.968 0.001
TEA 3 TVAR 0.570 0.425 0.330
TIN 3 3 TV–STAR 3 0.024 0.866 0.535
WHT 2 0 AR 0.540 0.570 0.010
WOL 3 AR 0.260 0.434 0.655
ZNC 2 AR 0.580 0.869 0.550

Note: the column headed with p indicates the autoregressive lag length; the column headed with q indicates the distributed
lag length of ENSO (where applicable); the column headed with Model indicates the functional form of the estimated model,
which can be a simple autoregressive model, a time–varying autoregressive model, an autoregressive distributed lag model, or
any of the three nonlinear models given by equations (11) – (13). Moreover, the column headed with d denotes the delay
factor of the estimated STAR model (where applicable). Finally, columns headed with pt∗ , pAC, and pARCH denote
probability values associated with hypotheses of remaining parameter nonconstancy, residual autocorrelation, and
autoregressive conditional heteroskedasticity, respectively.
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Table 3: The Relative Contribution of ENSO to the variance of Selected Commodity Prices

Commodity h = 1 h = 6 h = 12 h = 24

ALM 0.10 0.18 0.23 0.24
ARB 0.13 0.16 0.17 0.17
BEF 0.10 0.12 0.13 0.15
CCA 0.06 0.15 0.21 0.27
CCN 0.07 0.06 0.12 0.31
CPR 0.04 0.04 0.09 0.28
FSH 0.06 0.18 0.26 0.31
GLD 0.00 0.02 0.02 0.03
HRD 0.12 0.12 0.19 0.25
NCK 0.12 0.24 0.29 0.33
OLV 0.09 0.14 0.24 0.33
PLM 0.10 0.09 0.19 0.38
SBM 0.09 0.13 0.17 0.17
SBN 0.06 0.09 0.09 0.17
SBO 0.06 0.06 0.14 0.30
SFT 0.07 0.06 0.12 0.18
SLM 0.04 0.10 0.15 0.18
SNF 0.10 0.15 0.27 0.32
TIN 0.09 0.13 0.23 0.31
WHT 0.06 0.16 0.23 0.28
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Figures

Source: International Research Institute for Climate and Society at Columbia University

Figure 1: Global Weather Effect of ENSO Anomalies
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(a) ENSO (b) ALM (c) BEF

(d) CCA (e) FSH (f) GLD

(g) HRD (h) NCK (i) OLV

(j) SFT (k) SNF (l) TIN

Note: The plots feature time series of the sea surface temperature anomaly and the selected commodity prices (in gray), as
well as the transition functions (STAR–type in red and TVAR–type in blue).

Figure 2: Estimated Transition Functions of ENSO and Selected Price Equations

26



(a) ENSO (b) ALM (c) ARB

(d) BEF (e) CCA (f) CCN

(g) CPR (h) FSH (i) GLD

(j) HRD (k) NCK (l) OLV

(m) PLM (n) SBM (o) SBN

(p) SBO (q) SFT (r) SLM

(s) SNF (t) TIN (u) WHT

Note: The plots feature the median GIRs (in red or blue for El Niño and La Niña shocks, respectively) and the 90 percent
confidence bands (in lighter shades of red and blue) over the 24–month horizon for ENSO and the selected commodity prices.

Figure 3: Generalized Impulse–Response Functions of ENSO and the Selected Commodity Prices
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(a) ENSO (El Niño) (b) ENSO (La Niña)

(c) ALM (El Niño) (d) ALM (La Niña)

(e) CCA (El Niño) (f) CCA (La Niña)

(g) HRD (El Niño) (h) HRD (La Niña)

(i) SNF (El Niño) (j) SNF (La Niña)

Note: The plots feature the median GIRs (in red or blue for El Niño and La Niña shocks, respectively) and the 90 percent
confidence bands (in lighter shades of red and blue) over the 24–month horizon for ENSO and the selected commodity prices.

Figure 4: Regime–Dependent Nonlinearities in ENSO and the Selected Commodity Prices
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(a) FSH (before) (b) FSH (after)

(c) GLD (before) (d) GLD (after)

(e) SFT (before) (f) SFT (after)

Note: The plots feature the median GIRs (in red or blue for El Niño and La Niña shocks, respectively) and the 90 percent
confidence bands (in lighter shades of red and blue) over the 24–month horizon for ENSO and the selected commodity prices.

Figure 5: Structural Change in Fishmeal, Gold, and Soft Log Prices
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(a) OLV (El Niño, before) (b) OLV (El Niño, after)

(c) OLV (La Niña, before) (d) OLV (La Niña, after)

(e) TIN (El Niño, before) (f) TIN (El Niño, after)

(g) TIN (La Niña, before) (h) TIN (La Niña, after)

Note: The plots feature the median GIRs (in red or blue for El Niño and La Niña shocks, respectively) and the 90 percent
confidence bands (in lighter shades of red and blue) over the 24–month horizon for ENSO and the selected commodity prices.

Figure 6: Structural Change and Regime–Dependent Nonlinearities in Olive Oil and Tin Prices
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