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Abstract

We develop an alternative estimator for policy evaluation in the presence of inter-

active fixed effects. It extends Pesaran (2006)’s two-stage procedure to a difference-in-

differences-type program evaluation framework, and extracts principal components from

the control group to form factor proxies. Consistency and asymptotic distributions are

derived under stationary factors, as well as nonstationary factors with any integration or-

der. Simulation exercises demonstrate excellent performance of our estimator relative to

existing methods. We present empirical results from microeconomic and macroeconomic

applications. We find that our estimator generates the most robust treatment effect es-

timates, and our weights for control group units deliver strong economic interpretation

regarding the nature of the underlying factors.
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1 Introduction

Panel data models with multifactor error structures (“interactive fixed effects”) have become

increasingly popular in recent years. In these models, the outcomes are influenced by unob-

served common factors that vary over time. Heterogeneity in the sensitivity (factor loadings)

to these factors across different entities can generate rich cross-sectional dependence in the

data. Estimation procedures developed by Pesaran (2006) and Bai (2009) have resulted in

many applications related to regional-level panel data.

Despite the increasing popularity of these methods, few studies have applied them directly

to program evaluation – measurement of the impact of a particular policy intervention. One

exception is Kim and Oka (2014), who use state-level panel data and the Bai (2009) estimator

to study the effects of unilateral divorce law reforms on divorce rates in the US.1 They point

out that earlier studies are based on the difference-in-differences (DID) estimator, which does

not fully account for the rich cross-sectional dependence and unobserved heterogeneity in the

data. Their empirical analysis reconciles some of the mixed evidence in earlier studies, while

also showing that their approach produces more robust estimates. Gobillon and Magnac

(2016) clarify the identification conditions that allow the Bai (2009) estimator to be used in

program evaluation. In Monte Carlo simulations, they find that Bai (2009) performs better

than DID under certain factor specifications but worse in others. The estimator is used to

evaluate the impact on local unemployment of an enterprise zone policy in France. They

show that their earlier estimated impacts from DID (Gobillon, Magnac and Selod (2012)) are

robust to interactive fixed effects.

In this paper, we develop an alternative approach for policy evaluation in the presence

of interactive fixed effects. Our estimator is implemented in two stages. First, use the full

panel of control group outcomes to extract principal components, which are in the form of

weighted outcomes of control group units. These principal components serve as proxies for

linear combinations of unobserved factors. Then, for each treatment group unit, estimate

the unit-specific treatment effect in a time-series regression with a post-intervention period

indicator augmented with the principal components.
1Among the numerous applications of Pesaran (2006), one example is Holly, Pesaran and Yamagata (2010),

who study the determinants of house prices in a panel with 49 US states over 29 years. They find that real
house prices have generally been rising in line with fundamentals (real incomes), but there are also some outlier
states. They do not consider evaluation of particular housing policies.
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Our estimator can be considered as an extension to Pesaran (2006). He uses cross-sectional

averages of time-varying variables in the model as proxies for (linear combinations of) com-

mon factors, which are then used as augmented regressors in the second-stage regression.

His estimator is not directly applicable here due to two complications: (i) the DID-type pro-

gram evaluation framework is incompatible with some of the modeling assumptions; (ii) the

treatment effect contaminates factor proxies that are formed by cross-sectional averages from

all units. We propose constructing principal components from data on control group units

to form factor proxies. The DID-type framework also prompts us to consider asymptotics

in the dimensions of control group units (NC), treatment group units (NI), pre-intervention

periods (T0), and post-intervention periods (T1). We derive the consistency and asymptotic

distribution of our treatment effect estimator under stationary factors, as well as nonstation-

ary factors with any integration order. The properties are obtained under large T , while

N (both NC and NI) may be finite or infinite. By contrast, the theoretical analysis in Pe-

saran (2006) and Bai (2009) covered stationary factors under big N and T , and the Pesaran

(2006) estimator was found to have the same properties when factors have integration order

1 (Kapetanios, Pesaran and Yamagata (2011)). Our principal component method is also

carried out differently from Bai (2009). He uses a T × T covariance matrix to extract the

principal components, which are used to estimate the factors and factor loadings explicitly.2

By contrast, we extract the principal components from an NC ×NC covariance matrix. The

factors and factor loadings are treated as nuisance parameters and are not estimated sepa-

rately. Our estimator possesses different asymptotic properties and more robust small sample

performance relative to Bai’s approach.

Through Monte Carlo simulation and two empirical applications, we compare the perfor-

mance of our estimator with DID, Bai (2009), and “synthetic control” methods. Synthetic-

control-style methods (e.g., Abadie, Diamond and Hainmueller (2010), Hsiao, Ching and Wan

(2012)) have become popular as a tool for program evaluation in recent years. They match

the outcome of the treatment unit via weighted control group units (“synthetic treatment

unit”) during pre-intervention periods. The weights are computed by constrained optimiza-

tion in Abadie, Diamond and Hainmueller (2010), and by auxiliary regression in Hsiao, Ching
2He uses the whole panel of regression residuals to construct a T×T covariance matrix and extract principal

components. The procedure is carried out iteratively to update the parameter estimates. The interactive-effect
estimator is consistent and asymptotically normal under both large N and large T .
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and Wan (2012). Assuming the weights are time-invariant, a counterfactual path of the treat-

ment unit can be constructed in post-intervention periods. Synthetic control methods have

been analyzed under stationary factors. Recent work has also shown that caution should

be exercised due to implicit assumptions. For instance, Gobillon and Magnac (2016) derive

the support conditions for Abadie, Diamond and Hainmueller (2010), in which the weights

are restricted between 0 and 1. They show that bias can occur if characteristics (e.g., factor

loadings) of the treatment unit is not a subset of the support of characteristics of control

group units. Their simulation exercise confirms that the bias worsens when the supports of

factor loadings become different between treatment and control units.

Our simulation exercise demonstrates excellent performance of our estimator relative to

existing methods, across various specifications of factors and sample size (NC , NI , T0, T1).

Our estimator generates the lowest empirical SD, especially in the presence of persistent

stationary factors or nonstationary factors. We find that Hsiao, Ching and Wan (2012) is

the second best performer, followed by DID and Bai (2009). Hsiao, Ching and Wan (2012)

still performs relatively well under factors with integration order 1; by contrast, DID and

Bai (2009) deteriorate quickly when factors are nonstationary. Our estimator is robust to

nonstationary factors of higher integration orders, and is the only usable choice under such

cases.

We present results from one macroeconomic and one microeconomic application: (i) effect

of political and economic integration of Hong Kong with mainland China on the GDP growth

of Hong Kong (see Hsiao, Ching and Wan (2012); (ii) effect of a large-scale tobacco control

program on California’s cigarette sales (see Abadie, Diamond and Hainmueller (2010)). In

both applications, we find that our estimator generates the most robust estimates, and our

weights for control group units deliver strong economic interpretation regarding the nature of

the underlying factors. Although we find that results from different methods can be coherent

in some scenarios, there are also scenarios in which the robustness of existing methods is

undermined. For instance, in the GDP growth application, synthetic control fails to capture

the factors underlying the Asian Financial Crisis, which occurred shortly after the policy

intervention – the return of sovereignty of Hong Kong to China. This results in a spurious

negative (but insignificant) effect of political integration. In the cigarette sales application,

we find strong evidence for persistent, long-run trends in levels of cigarette sales. The existing
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methods tend to attribute these stochastic trends to the treatment effect, resulting in over-

estimation of the effect. By contrast, our estimator (under multiple principal components)

finds a smaller treatment effect in level data, which is consistent with evidence from data on

yearly change of cigarette sales.

The paper proceeds as follows. Section 2 discusses the model and estimator. Sections 3

and 4 report simulation and empirical results, respectively. Section 5 concludes.

2 The Model and Estimator

We have a panel consisting of N cross sectional units and T time periods. Suppose that the

cross section consists of treatment group I with NI treatment units, and control group C with

NC control units. There is a policy intervention occurring right after time period T0, where

0 < T0 < T . The time horizon is splitted into pre-intervention periods T pre = {1, . . . , T0}

and post-intervention periods T post = {T0 + 1, . . . , T}.

If there is no policy intervention at all, all units would have the outcome of y0
it, which is

assumed to take the following multifactor structure

y0
it = γ′i

1×p
· dt
p×1

+ µ′i
1×m
· ft
m×1

+ εit,

where dt is a vector of p deterministic factors, ft is a vector of m stochastic factors, and εit

is an idiosyncratic noise. The factor loadings γi and µi are treated as fixed effects associated

with the deterministic and stochastic factors, respectively.3

Now, with the policy in place, we assume that the ith treatment unit is subject to a

treatment effect of ∆i on top of y0
it during the post-intervention periods, with the observed

outcome given by y0
it + ∆i; otherwise, the observed outcome is given by y0

it for the treatment

units during the pre-intervention periods, and for all control units at all time periods. In the

end, the econometrician observes a panel of N × T outcomes, given by

yit = y0
it + ∆i1{i∈I}1{t>T0}

3The model with fixed effect in levels is obtained as a special case when one of the components of dt is set
to 1.
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for i = 1 . . . , N and t = 1, . . . , T .

Assumption 1 (treatment status): For any i and t, we have (i) E(εit|1{i∈I}, γi, µi, ft) =

0; and (ii) 0 < E(1{i∈I}) < 1.

Assumption 1(i) means that the treatment group indicator 1{i∈I}, the unobserved factors

and factor loadings are jointly predetermined. Note that this assumption does not prohibit

the presence of correlation between 1{i∈I} and µi. Assumption 1(ii) restricts the probability

of an individual being in the treatment group to be strictly between 0 and 1.4

Substituting y0
it into the equation, the observations yit can be expressed as follows:

yit = γ′i
1×p
· dt
p×1

+ µ′i
1×m
· ft
m×1

+ ∆i1{i∈I}1{t>T0} + εit. (1)

Our goal is to estimate the treatment effect ∆i. Let us stack the control group observations

into vector form:

yCt
NC×1

= γ′C
NC×p

· dt
p×1

+ µ′C
NC×m

· ft
m×1

+ εCt. (2)

Collecting all T observations into columns, we obtain the regression in matrix form:

yC
NC×T

= γ′C
NC×p

· D
p×T

+ µ′C
NC×m

· F
m×T

+ εC
NC×T

. (3)

For identification, we first consider the following assumptions on the common factors and

factor loadings.5

Assumption 2 (common factors): (i) dt = [d1t, . . . , dpt]′ is a vector of p deterministic

factors; (ii) ft = [f1t, . . . , fmt]′ is a vector of m stochastic factors. The stochastic factor fjt

is an I(rj) process with any fixed integration order rj ≥ 0, for j = 1, . . . ,m. The integration

order can differ across factors. When rj = 0 for all j, fjt is a covariance stationary process;

(iii) rank(F ) = m; (iv) 1′postMF 1post > 0, where 1post is the T × 1 vector of post-intervention

period indicators (consisting of T0 zeros followed by T1 ones), and MF = IT×T −F ′(FF ′)−1F .
4Assumption 1 is common in the related literature, e.g., Hsiao et al. (2012) and Gobillon and Magnac

(2016). Note that the latter treats the factors as given.
5When we discuss the principal components method in later sub-sections, we will provide sufficient condi-

tions such that Assumption 3 holds.
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Assumption 3 (factor loadings): For a given NC × T panel of control group observa-

tions, we have rank(µC) = m.

Assumption 2(ii) allows for arbitrary and heterogeneous integration orders on the stochas-

tic factors. This is considerably more general than the assumptions in the interactive fixed

effect literature (e.g., Pesaran (2006), Bai (2009), Kapetanios et al. (2011)) and in the pro-

gram evaluation literature (e.g., Abadie et al. (2010), Hsiao et al. (2012), and Gobillon and

Magnac (2016)).6 Assumption 2(iii) makes sure that the m factors are linearly independent.

This entails that the total number of sample periods T is no less than the number of factors

m. Assumption 2(iv) is an identification condition which essentially requires that the vector

of post-intervention period indicators is not in the space spanned by the m factors; otherwise,

multicollinearity would occur, and the individual treatment effect is not identifiable. This

assumption is similar to Assumption 5(a) of Pesaran (2006) and the condition in Proposition

3 of Bai (2009), but adapted to the individual treatment effect model (1). Gobillon and

Magnac (2016) imposes the same identification condition.

Assumption 3 ensures sufficient variability in the factor loadings to allow for the iden-

tification of the m factors. This is often satisfied with large NC in practice. This is the

same as Assumption 4 in Hsiao et al (2012). Pesaran (2006) and Kapetanios et al (2011)

require similar rank assumption for identification of individual-specific coefficients under the

panel set-up, although they do not require this assumption for identifying the average of the

individual-specific coefficients. It is possible to replace the rank condition in Assumption 3

by a weaker condition:

Assumption 3’ (factor loadings): (i) For a given NC × T panel of control group

observations, we have rank(µC) = p, where 0 < p ≤ m; (ii) If p < m, then for all i = 1, . . . N ,

we have µi = Rξi for some p× 1 vector ξi and a m× p matrix R.

Assumption 3’ relaxes the full row rank condition of µC . The cost is that we can identify at

most p (linearly independent) combinations out of the m unobserved factors, and we need the
6Kapetanios et al. (2011) derives asymptotic theories that extend Pesaran (2006)’s estimation method to

the case with I(1) factors. Bai et al. (2009) considers the estimation of a panel cointegration model with I(1)
factors. Abadie et al. (2010)’s synthetic control method assumes that the factors to be bounded uniformly
from above, thus ruling out nonstationary factors. Hsiao et al. (2012) considers identification with arbitrary
factors but the results on asymptotic distributions only apply under stationary factors.
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proportionality condition of Assumption 3’(ii) to ensure identification. The proportionality

condition essentially restricts that the factor loadings on the m factors remain to be of the

same ratio (as defined in R) for all units.

Example: Suppose m = 2, NC = 3, NI = 1, µC =


1 2

1.1 2.2

1.5 3

, and µI = [1.2 2.4].

Then rank(µC) = 1, and assumption 3’(ii) is satisfied because we have R = [1 2]
′

such that

µi = Rξi for i ∈ C and i ∈ I. Specifically, ξ1 = 1, ξ2 = 1.1, ξ3 = 1.5, ξ4 = 1.2.

2.1 Construction of Factor Proxies

To form factor proxies, we construct m linearly independent weighted cross-sectional means

out of the control group observations yCt. Let W = [w1, . . . , wm] be an NC ×m weighting

matrix, so that W ′yCt = [w′1yCt, . . . , w
′
myCt] contains m different weighted cross-sectional

means of yCt at time t. The weighting matrix is common to all periods t, and satisfies the

following assumption.

Assumption 4 (weighting matrix): Let wij be the (i, j)th element of W , an NC ×m

weighting matrix. The weighting matrix must satisfy (i)
∑NC

i=1wij = 1; (ii)
∑NC

i=1 |wij | < K

for some constant K; and (iii) no linear combinations of the columns of W are in the null

space of µC .

Assumption 4(i)-(ii) are analogous to Assumption 5(ii)-(iii) in Pesaran (2006). When

m = 1, one simple example that satisfies Assumption 4(i)-(ii) is the equal weighting scheme,

with wi1 = N−1
C for all i ∈ C. Assumption 4(iii) is used for preserving the rank of µC

(discussed later), and is often satisfied with large NC in practice.

In practice, the number of factors m is unknown, but it is possible to estimate it empir-

ically. The number of factors can be chosen empirically such that a pre-specified amount of

variability of yCt is explained jointly by the chosen principal components. Even if the number

of factors m is unknown and not estimated precisely, it is still possible to achieve consistent

estimation without loss of asymptotic efficiency by choosing at least m principal components

to proxy for the factors (Moon and Weidner, 2015).

In addition, we impose the following assumption on the idiosyncratic errors.
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Assumption 5 (idiosyncratic errors): (i) The idiosyncratic error εit satisfies E(εit) =

0 and E(ε4it) < ∞ for all i and t. Also, defining σij,st := E(εisεjt), we have |σij,st| ≤ σ̄ij for

all s, t and |σij,st| ≤ τst for all i, j such that, for each k = 1, ...,m,

1
T

∑
i,j∈C

T∑
s,t=1

wik |σij,st| ≤M ,
∑
i,j∈C

wikσ̄ij ≤M ,
1
T

T∑
s,t=1

τst ≤M ;

(ii) as NC →∞, we have, for each k = 1, ...,m,

∑
i∈C

wikσ̄ij = O

(
1
NC

)
for all j ∈ C,

NC∑
i,j=1,i 6=j

wikwjkσ̄ij = O

(
1
NC

)
;

(iii) the errors εis are independent of the factors ft and factor loadings γj and µj , for all i, j

and s, t.

Assumption 5(i) allows for weak cross-sectional and serial dependence of εit and is more

general than Assumption 2 of Pesaran (2006) and Assumption C of Bai (2009). In particular,

it reduces to Bai’s Assumption C (ii) under the special case when wik = N−1
C for all i ∈ C,

and Pesaran’s Assumption 2 when wik = O( 1
NC

). Assumption 5(ii) controls the measurement

error related to factor proxies.

2.1.1 Identification strategy

In this section, we will present the identification strategy for the individual treatment ef-

fect in (1). Then we will propose the regression model that implements this strategy. For

expositional convenience, we will abstract from the presence of deterministic factors in the

discussion.

The identification strategy is motivated from the fact that the control group outcome

can be decomposed into the interactive fixed effect term and idiosyncratic error. With as-

sumptions for the factor loadings and idiosyncratic errors, we can extract the dynamics of the

common factors over both the pre- and post-intervention periods without being contaminated

by treatment effects. We will show that the factor proxies constructed this way are consis-

tent as the cross section of the control group sample grows. In this sense, the asymptotic

argument for consistency is similar to that for the factor proxies in Pesaran (2006). Unlike
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other estimation methods for interactive fixed effect models that require large N and T (e.g.,

Bai (2009)), our factor proxies are consistent as NC →∞, with T and NI remaining finite.

For now, let us suppose that the number of factors is known.7 By choosing a weighting

matrix W that satisfies Assumption 4, the m weighted averages w′1yCt, . . . , w
′
myCt can serve

as a proxy for the m unobserved factors. Let us pre-multiply (2) by W ′ and we obtain

W ′yCt = W ′µ′Cft +W ′εCt. (4)

Full rank case If the factor loading matrix µC is of full rank (Assumption 3) and the

weighting matrix W is not in the null space of µC (Assumption 4(iii)), then

rank(µCW ) = m, (5)

and hence the inverse (µCW )−1 exists. We can then express the vector of factors ft into a

linear combination of yCt and εCt

ft = (W ′µ′C)−1W ′yCt − (W ′µ′C)−1W ′εCt. (6)

By Assumption 5, the variance of the kth weighted average of idiosyncratic errors is

V ar(w′kεCt) =
NC∑
i=1

w2
ikV ar(εit) +

NC∑
i,j=1,i 6=j

wikwjkCov(εit, εjt)

≤
NC∑
i=1

w2
ikσ̄ii +

NC∑
i,j=1,i 6=j

wikwjkσ̄ij

= O

(
1
NC

)
. (7)

This implies that

ft = (W ′µ′C)−1W ′yCt +Op

(
1√
NC

)
,

and hence the linear combination of control group outcomes, (W ′µ′C)−1W ′yCt, serves as a

good approximation of ft when the control group is big enough.

Since the outcomes of the treatment group units i ∈ I depend on the same factor vector
7The case with unknown number of factors will be discussed in the next sub-section.
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ft, we can substitute the factor vector expression (6) into (1) and obtain

yit = µ′i(W
′µ′C)−1W ′yCt + ∆i1{t>T0} + [εit − µ′i(W ′µ′C)−1W ′εCt]. (8)

This motivates us to consider the following regression for treatment unit i ∈ I,

yit = α′iW
′yCt + δi1{t>T0} + eit. (9)

Comparing with (1), the regression coefficients are given by

αi = (µCW )−1µi,

δi = ∆i.

This shows that it is possible to use m weighted averages w′1yCt, . . . , w
′
myCt as factor proxies,

provided that (5) is satisfied. The individual treatment effect ∆i can be identified through

the regression coefficient δi.

Note that unless we choose W very specifically such that (µCW )−1 is an identity matrix,

each of the m weighted averages w′1yCt, . . . , w
′
myCt merely represents a linear combination

of the m unobserved factors ft = [f1t, . . . , fmt]′. The regression model also shows that µC

and µI are in general not separately identified. However, there are exceptions under special

cases. For instance, suppose m = 1 and we use equal weights (i.e., all elements in w1 equal

1/NC). Then µCW = (1/NC)
∑

i∈C µi =: µ̄C . This implies αi = (µCW )−1µi = µi
µ̄C

for i ∈ I,

therefore we can identify the factor loading for each treatment group unit relative to the

control group.

Rank deficient case Suppose µC is rank deficient in the sense that rank(µC) = p < m.

We can still identify p linear combinations of factors under the proportionality condition

(Assumption 3’(ii)). Intuitively, to identify the p linear combinations out of m factors, we

need p linearly independent proxies obtained from p different weighted averages of control

group outcomes. The proportionality condition imposes m − p restrictions on the factor

loadings so that the remaining p free parameters can be used to identify the p loadings

associated with the p linear combinations of factors.
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More specifically, given that µC is of rank p, there exist a m×p matrix R with orthogonal

columns and a NC × p matrix W whose columns are orthogonal and sum to one, such that

rank(R′µCW ) = p, (10)

which implies that the inverse (R′µCW )−1 exists. Using this fact and Assumption 3’, we can

identify the individual treatment effects. Hence the identification strategy is similar to those

in the full rank case, and more details are presented in the Appendix.

Remark 1 Compared with equation (8), the regression error in (9) is eit = εit−µ′i(W ′µ′C)−1W ′εCt,

which involves the weighted averages of idiosyncratic noises W ′εCt from the control group.

When approximating the factor ft with W ′yCt, there is measurement error, and the covariance

between regression error eit and factor proxy W ′yCt is:

Cov(eit,W ′yCt) = Cov(−α′iW ′εCt,W ′µ′Cft +W ′εCt) + Cov(εit,W ′µ′Cft +W ′εCt)

= Cov(−α′iW ′εCt,W ′µ′Cft) + Cov(εit,W ′µ′Cft)+

Cov(−α′iW ′εCt,W ′εCt) + Cov(εit,W ′εCt)

= −α′iV ar(W ′εCt) + Cov(εit,W ′εCt).

In the second-to-last equality above, the first two terms are zero by the exogeneity of ft, while

the remaining terms are non-zero in general. Note that the remaining terms vanish if the

number of control units, NC , tends to infinity, due to the fact that they are of order O
(

1
NC

)
by (7).8

Remark 2 In Pesaran (2006), the overall averages W ′yt are used as factor proxies. Can

we use this instead of the control group averages W ′yCt as the factor proxy? For simplicity,

suppose there is only one factor (m = 1), and we set wi1 = 1
N for all i = 1, . . . , N . The

8Under Assumptions 4 and 5, both terms are O
(

1
NC

)
by (7) and the fact that |Cov

(
εit,
∑NC
j=1 wjkεjt

)
| ≤∑NC

j=1 wjkσ̄ij = O
(

1
NC

)
.
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factor proxy now reduces to the simple average, given by

ȳt = µ̄ft +
1
N

N∑
i=1

∆i1{i∈I}1{t>T0} + ε̄t

= µ̄ft +
NI

N

1
NI

∑
i∈I

∆i1{t>T0} + ε̄t

= µ̄ft +
NI

N
∆̄1{t>T0} + ε̄t,

where ∆̄ is the sample average treatment effect among the treatment units. We readily see

that the factor proxy is contaminated by ∆̄. The regression on ȳt for the treatment unit i ∈ I

becomes

yit = βiȳt + δi1{t>T0} + eit

= βiµ̄ft + βi
NI

N
∆̄1{t>T0} + δi1{t>T0} + eit + βiε̄t

= βiµ̄ft +
(
βi
NI

N
∆̄ + δi

)
1{t>T0} + (eit + βiε̄t).

Comparing with the DGP (1), we see that

µi = βiµ̄,

∆i = δi + βi
NI

N
∆̄.

It is then clear that the individual treatment effect estimated from the regression on the overall

averages is biased. The bias is given by −βi NIN ∆̄, which vanishes if NI/N → 0.

Remark 3 The DID-type framework (with NC , NI , T0, T1) is not compatible with the original

Pesaran (2006) framework for a number of reasons. Adapted to our notation, his model is:

yit = γ′idt + β′ixit + µ′ift + εit,

xit = Γ′idt +M ′ift + vit,

for i = 1, ..., N and t = 1, ..., T .9 In his procedure, the first step is to form cross-sectional
9The slope coefficients βi follow a random coefficient model βi = β + νi, νi ∼ IID(0,Ων) (see Pesaran’s

Assumption 4 for more details).
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averages ȳt and x̄t. In the second step, for each i, regress yit on xit, ȳt and x̄t to obtain an

estimate for βi.

Our interaction term 1{i∈I}1{t>T0} cannot be considered as xit because xit is determined

by an idiosyncratic shock vit which has positive variance across i and t (Pesaran’s Assump-

tion 2).10 Although we can express the interaction term as part of γ′idt in a parsimonious

manner, the treatment effect will not be identified because γi is a nuisance parameter and

is not estimated.11 In addition, to avoid the issue in remark 2 we need to set the weight

wi = 0 for all treatment units i ∈ I. This violates Assumption 5(i) of Pesaran (2006) if the

treatment group is a significant portion of all units.

2.1.2 Choice of Weighting Matrix

How can we find the weighting matrix for a given data set? We propose obtaining W by

applying principal component analysis (PCA) to the NC × NC square matrix yCy
′
C

T r̄ , where

r̄ = max(2r1, ..., 2rm, 1).12 Provided that the observations in the control group have enough

variability, so that the rank of the data matrix yC of the control group outcomes is m, we

can find m eigenvectors w1, . . . , wm of yCy
′
C

T r̄ . The m eigenvectors are linearly independent,

orthogonal to each other, and can be normalized so that all columns sum to one, in the sense

that
∑NC

i=1wij = 1 for all j = 1, . . . ,m, and w′jwk = 0 for all j 6= k. The following propo-

sition provides sufficient conditions such that the weighting matrix obtained from principal

component analysis will satisfy rank conditions for identification:13

Proposition 1 Suppose the NC × T data matrix yC is generated by equation (3), has rank
10Even if we treat the interaction term as xit, the estimation procedure will result in perfect multicollinearity.

For instance, form the cross sectional average of the interaction term 1
N

∑N
i=1 1{i∈I}1{t>T0} = NI

N
1{t>T0}. For

treatment unit i ∈ I, the regression is

yit = δi1{t>T0} + βiȳt + ϕi
NI
N

1{t>T0} + eit,

which is subject to collinearity.
11For example, set γi = [∆1, ...,∆NI , 0, ..., 0]′ and dt = 1{t>T0}.
12The principal components remain identical regardless of the value of r̄.
13The principal component method is not the only way to find the appropriate W . More generally, we

may apply singular value decomposition. Identification is possible as long as one can find W that satisfies (5).
Suppose Assumptions 2 and 3 hold, and that no linear combinations of the m factors are in the null space of µC .
Then, by a standard result in linear algebra, we obtain rank(µ′CF ) = rank(F )−dim{N(µC)∩R(F )} = m−0 =
m so that the NC ×NC square matrix µ′CFF

′µC is of rank m. There exists W such that W ′µ′CFF
′µCW is

a diagonal matrix (whose diagonal entries are the singular values of the matrix µ′CFF
′µC) and is invertible.

Following the arguments in the proof of the Proposition, we see that (5) is satisfied.
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p, and Assumptions 2 and 5 hold. Let {w1, . . . , wp} be a set of p orthogonal eigenvectors

obtained from principal component analysis on yCy
′
C

T r̄ . Let W = [w1, . . . , wp] be the NC × p

weighting matrix that satisfies Assumption 4. Then, as NC →∞, one of the following results

hold:

(a) When p ≥ m, both Assumption 3 and the rank condition (5) hold, i.e., rank(µC) = m

and rank(µCW ) = m;

(b) When p < m, there exists an m × p matrix R with orthogonal columns such that the

rank condition (10) holds, i.e., rank(R′µCW ) = p.

Note that our principal component analysis is carried out on an NC ×NC covariance matrix

of control group observations. The principal components are treated as proxies for the linear

combination of individual factors and factor loadings. By contrast, the principal component

analysis in Bai (2009) is carried out on a T × T matrix, and the factors are identified under

large T and N and appropriate normalizations (e.g., FF ′/T = Im, and µµ′ being diagonal,

where µ is an m × N matrix of factor loadings of all units); however, the normalization

needs to be adjusted if some factors are nonstationary. The two estimators have different

asymptotic properties and finite sample performance.14

2.2 Least Squares Estimation

Consider the regression for treatment group unit i ∈ I (equation (9)):15

yit = α′iW
′yCt + δi1{t>T0} + eit.

Let 1post be the T × 1 vector of post-intervention period indicators, consisting of T0 zeros

followed by T1 ones. Denote ȳC := y′CW = [y′C1W, . . . , y
′
CTW ], a T ×m matrix consisting of

weighted averages of control group outcomes, and let MȳC = IT×T − ȳC(ȳ′C ȳC)−1ȳ′C be its

orthogonal projection matrix. Also let yi = [yi1, . . . , yiT ]′ and ei = [ei1, . . . , eiT ]′. We may
14Our approach of extracting principal components from an NC × NC matrix offers computational conve-

nience over Bai’s (2009) method when T > NC (Stock and Watson (2002)).
15As described in earlier sections, the analysis and results still apply if we include deterministic factors to

the model. In particular, an intercept can be added to the regression equation, capturing the fixed effect in
levels.
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thus represent the time series regression (9) in vector form,

yi = ȳCαi + δi1post + ei. (11)

The main object of study is the least squares estimator of the individual treatment effect

δi, given by

δ̂i = (1′postMȳC1post)−11′postMȳCyi. (12)

In relation to Pesaran (2006)’s correlated common effects (CCE) estimators, we refer

to this estimator as the CCE-DID estimator. When we use principal component analysis

instead of cross-sectional averages to form factor proxies, we refer to the estimator as the

CCEPC-DID estimator.

2.3 Asymptotic distribution of the least squares estimator

We first discuss the asymptotic properties of the least squares estimator δ̂i when some of the

factors are nonstationary. Then we will tackle the case when all factors are stationary.

2.3.1 Nonstationary case

Suppose rmax = max(r1, . . . , rm) > 0. Let us define the m×m diagonal matrices:

Υ =


T r1∨0.5 O

T r2∨0.5

. . .

O T rm∨0.5

 ,

Υ1 =


T r1∨0.5

1 O

T r2∨0.5
1

. . .

O T rm∨0.5
1

 .
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Here a ∨ b = max(a, b). Note that Υ is invertible. Define the limit

Πr = lim Υ1Υ−1 =


κr1∨0.5 O

κr2∨0.5

. . .

O κrm∨0.5

 , (13)

where κ = limT1/T as T1, T → ∞. Let us introduce the following probability limits, all of

which contain elements that are Op(1) (see the Supplementary Results):

s′F = plim
1′postF

′Υ−1
1√

T1
, (14)

sFF ′ = plim Υ−1FF ′Υ−1, (15)

sFei = plim Υ−1Fei, (16)

σei = lim
1
T1

∑
s,t∈T post

Cov(eis, eit). (17)

Note that sFF ′ is invertible by Assumption 2(iii).

We have the following results.

Theorem 1 Suppose rmax = max(r1, . . . , rm) > 0 and that Assumptions 1-5 hold. Then, as

T1, T →∞ and T1/T → κ ∈ [0, 1], we obtain

√
T1(δ̂i − δi)

d−→
σeiZ − s′FΠrs

−1
FF ′ΠrsFei

1− s′FΠrs
−1
FF ′ΠrsF

, (18)

where Z is a standard normal random variable, and the probability limits are defined in (13)-

(17).

Corollary 1 Under the same conditions as in the above theorem, we obtain

δ̂i − δi
a.s.−→ 0.

Remark 4 When κ = 0, the limiting distribution of δ̂i is univariate normal regardless of the

integration order(s), due to Πr = 0. When κ 6= 0, the estimator δ̂i does not typically follow

an asymptotically normal distribution.
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Remark 5 The measurement error of factor proxies does not affect the limiting distribution

of δ̂i even under finite NC , as it is dominated in terms of stochastic order (see the discussion

before (28) in the proof). Furthermore, for any given NC , we may neglect the sample varia-

tions of the weighting matrix W obtained from principal component analysis on yCy
′
C/T

r̄, as

T1, T →∞ (see section 6.3.4).

2.3.2 Stationary case

Now consider the case when all m factors are stationary. The following theorem provides the

asymptotic distribution of δ̂i.

Theorem 2 Suppose that all r1 = . . . = rm = 0, and that Assumptions 1-5 hold. Let

T1, T →∞ and T1/T → κ ∈ [0, 1]. Then we have the following results:

(a) If NC →∞, then

√
T1(δ̂i − δi)

d−→ σeiZ

1− κE(f ′t)E(ftf ′t)−1E(ft)
,

(b) If E(ft) = 0, then √
T1(δ̂i − δi)

d−→ σeiZ.

Here Z is a standard normal random variable, and σei is defined in (17).

Corollary 2 Under the same conditions as in the above theorem, we obtain

δ̂i − δi
a.s.−→ 0.

Remark 6 Unlike the nonstationary case, we further need either NC → ∞ or E(ft) = 0

to achieve consistency of δ̂i in the stationary case. They are necessary to eliminate the

endogeneity bias due to measurement error of the factor proxies. However, just like the

nonstationary case, the sample variability of the weighting matrix W does not affect the

asymptotic distribution of δ̂i as T1, T →∞ for any given NC .

Remark 7 It is feasible to estimate the variance of δ̂i analytically in the stationary case.
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The asymptotic variance of δ̂i can be consistently estimated by

V̂ ar(δ̂i) =
1′postMȳC Σ̂eiMȳC1post

(1′postMȳC1post)2
,

where Σ̂ei is the T × T sample autocovariance matrix of the regression residuals êi1, . . . , êiT ,

where êit is defined by êit = yit− α̂′iW ′yCt− δ̂i1{t>T0}. If, for each i, the regression errors eit

form an iid sequence, then V̂ ar(δ̂i) is simplified to s2
ei/1

′
postMȳC1post, where s2

ei is the sample

variance of the residuals, given by s2
ei = 1

T−1

∑T
t=1 ê

2
it.

Summarizing the results above, a nice feature of our estimator δ̂i is that it is
√
T1 consistent

regardless of the number of unobserved factors, the integration order(s), and whether or not

there exists cointegration relationship among the factors. All asymptotic results hold when

T0 and NI are finite or infinite. The results also hold under finite NC if one of the following

conditions are satisfied: (i) some factors are nonstationary; (ii) all factors are stationary and

have zero mean.

3 Small Sample Properties of Estimators via Simulations

We compare the small sample properties of our estimator with existing methods. The data

generating process (DGP) that we consider is

yit = δi1{i ∈ I}1{t > T0}+ µ
′
ift + εit, (19)

with the treatment effect δi ∼ N(δ̄, σ2
δ ) and idiosyncratic error εit ∼ N(0, σ2

ε ). A variety of

factor structures are examined. Table I considers stationary factors. The first DGP involves

a single AR(1) factor:

f1t = ρ1f1t−1 + u1t, (20)

where u1t ∼ N(0, σ2
u1). The second DGP involves three AR(1) factors:

fjt = ρjfjt−1 + ujt, (21)
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where ujt ∼ N(0, σ2
uj) for j = 1, 2, 3. We set δ̄ = 3 and σδ = σε = 0.3. In the one-factor

case, we consider ρ1 = 0.5, σu1 = 0.3. In the three-factor case, (ρj , σuj) = (0.5, 0.3), (0.7, 0.5),

(0.9, 0.3), for j = 1, 2, 3, respectively.

Table II considers nonstationary factors. The first DGP involves three independent I(1)

factors:

fjt = fjt−1 + ujt, (22)

where ujt ∼ N(0, σ2
uj) and σuj = 0.3, 0.5, 0.1, for j = 1, 2, 3, respectively. The second DGP

considers a model with three independent factors – one I(1), one I(2), and one I(3) factor.16

In all DGPs, the factor loadings among control units (i ∈ C) for the jth factor are

µij ∼ N(µ̄Cj , σ2
µC

). The factor loadings among treatment units (i ∈ I) for the jth factor

are µij ∼ N(µ̄Ij , σ2
µI

). We normalize µ̄Cj = 1 for all j, and set σµC = 0.1, σµI = 0.3. In

single-factor DGPs, µ̄I1 = 1.5. In three-factor DGPs, µ̄Ij = 1.3, 1.5, 1.7 for j = 1, 2, 3,

respectively.

We consider the following sizes of control and treatment units: (NC , NI) = (5, 5), (10, 10),

(25, 25), and (50, 50). We also consider the following sizes of pre-intervention and post-

intervention time periods: (T0, T1) = (5, 5), (10, 10), (25, 25), and (50, 50). Thus, the total

number of observations ranges from (5 + 5)× (5 + 5) = 100 to (50 + 50)× (50 + 50) = 10, 000.

Results from six estimators are reported: (1) the CCEPC-DID estimator based on three

principal components; (2) the CCEPC-DID estimator based on one principal component; (3)

the CCE-DID estimator, which uses equal weights among control units; (4) the Hsiao, Ching

and Wan (2012) estimator (HCW thereafter), which constructs a “synthetic” treatment unit

by regressing the outcome of a treatment unit on the outcomes of control units during the

pre-intervention period; (5) the Bai (2009) estimator, which iteratively solves for factors and

the treatment effect; (6) the standard difference-in-differences estimator.17 In all cases, the

mean bias and empirical standard deviation of the average treatment effect among treatment

units are reported.
16In Appendix table A1, two extra cases are considered: (i) one AR(1) factor with ρ1 = 0.9 and σu1 = 0.3;

(ii) one I(1) factor with σu1 = 0.3.
17We do not report results from Abadie, Diamond and Hainmueller (2010)’s synthetic control estimator, as

its small sample performance is dominated by the HCW estimator. For more discussions on its small sample
properties, see Gobillon and Magnac (2016).
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Table I compares the performance of the above estimators under the case of stationary

factors. The left panel reports results from the one-factor model (ρ = 0.5). The mean bias

is generally small among all estimators. Interestingly, the CCE-DID estimator, which uses

equal weights among control units, has the lowest empirical SD among all estimators. The

CCEPC-DID estimator comes second in performance, and the extra principal components

have a small effect on the empirical SD. The HCW and DID estimators tie for the third

place in terms of performance. The HCW estimator performs best when the number of pre-

intervention periods (T0) far exceeds the number of control units (NC). When T0 < NC , the

estimator can only be implemented by first choosing a subset of control units via a model

selection procedure that they propose (AIC or AICC). The Bai (2009) estimator has the

largest empirical SD.18 There is also non-negligible bias when T is small. In addition, unlike

the other estimators (esp. CCE), its performance improves with the size of T but not N .

The right panel reports results from the three-factor model (ρ = 0.5, 0.7, 0.9). The CCE-

DID estimator remains the best performer, followed by the CCEPC-DID and HCW estima-

tors. Despite the multi-factor structure, additional principal components do not lead to a

lower empirical SD, as the most important linear combination of factors has been picked up

by the first principal component. Relative to the above estimators, the Bai (2009) and DID

estimators experience a large deterioration in performance under this factor structure.

Table II compares the performance of the estimators under the case of nonstationary

factors. The left panel reports results from the model with three I(1) factors. There are no-

table differences from Table I. The CCEPC-DID estimator with three principal components

becomes the best performer. Its empirical SD improves as T increases; by contrast, all the

other estimators have worse empirical SD as T increases, due to inadequate incorporation of

the nonstationary factors. The second-best performer is the CCEPC-DID estimator with one

principal component, which outperforms the CCE-DID estimator. Surprisingly, the HCW

estimator also performs well, although its asymptotic distribution is unknown under nonsta-

tionarity. The Bai (2009) and DID estimators have the worst performance, especially under

large T .

The right panel reports results from the model with three factors of different integration
18When factors are i.i.d. normal, we find that Bai (2009) has a similar empirical SD as the other estimators.

Gobillon and Magnac (2016) find that Bai (2009) and DID have similar performance when factors are i.i.d.
uniform, and Bai (2009) performs better than DID under seasonal (sinusoidal) factors.
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order (I(1), I(2) and I(3)). The CCEPC-DID estimator with three principal components

remains the best performer, and it is robust across different sample sizes. In fact, it is

the only estimator that keeps the empirical SD at reasonable levels. Generally, the other

estimators are not practically useful due to large empirical SDs. One exception is when both

NC and NI are large and (T0, T1) = (5, 5). Under such cases, the CCEPC-DID (1PC) and

CCE-DID estimators still generate reasonable empirical SDs.

Table III considers different sample balances between control and treatment units (NC , NI)

= (10, 40), (40, 10), (49, 1), as well as between pre-intervention and post-intervention periods

(T0, T1) = (10, 40), (40, 10). The sample balance may affect the properties of the estimators.

For instance, the asymptotic distribution of the CCEPC-DID and CCE-DID estimators de-

pends on the ratio T1
T0

, and the construction of factor proxies in finite samples depends on

the size of NC . The results suggest that both estimators are robust across different sample

balances. The empirical SD is similar when (T0, T1) = (10, 40) or (40, 10). The empirical SD

tends to be smaller when the number of control units is relatively large ((NC , NI) = (40, 10)),

but becomes larger when the imbalance is extreme. The Bai (2009) estimator tends to favor

a relatively large number of control units and post-intervention time periods. The HCW and

DID estimators have similar performances under different sample balances.

4 Empirical Applications

4.1 Application 1: GDP Growth

We first apply our estimators to the data in Hsiao, Ching and Wan (2012), who study the

effect of political and economic integration of Hong Kong with mainland China on the GDP

growth of Hong Kong. Their original data set contains quarterly real GDP growth rates

(year-on-year (YoY)) from 1993Q1 to 2008Q1 of 25 countries including Hong Kong. The

sovereignty of Hong Kong was transferred from the UK to China on 1 July 1997. In the

analysis of political integration, they use data from 1993Q1 to 2003Q4, which consists of

18 pre-intervention periods (1993Q1 - 1997Q2) and 26 post-intervention periods (1997Q3 -

2003Q4). Due to the relatively small number of pre-intervention periods, they use 10 countries

from the original sample to form the pool of control units – China, Indonesia, Japan, Korea,

Malaysia, Philippines, Singapore, Taiwan, Thailand, and the US. These countries are chosen
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due to their geographical or economic proximity to Hong Kong.

In the analysis of economic integration, they focus on the impact of the Closer Economic

Partnership Arrangement (CEPA) between Hong Kong and mainland China, which started

in January 2004. CEPA included a series of measures that strengthened the economic link

between both regions in terms of reduction or elimination of tariffs and non-tariff barriers on

trade in goods, liberalization of trade in services, and trade and investment facilitation. They

use the full sample of countries from 1993Q1 to 2008Q1, which consists of 44 pre-intervention

periods (1993Q1 - 2003Q4) and 17 post-intervention periods (2004Q1 - 2008Q1).19

Table IV compares the treatment effect estimates obtained from different methods.20 The

left panel reports the estimated effect of political integration, which provides mixed results.

The CCEPC-DID estimates are around 0.01 when 1, 2, or 3 principal components are used,

and they are statistically insignificant at the 10 percent level. When 5 principal components

are used, the coefficient becomes 0.021 and statistically significant at the 5 percent level.

The CCE-DID estimate is also positive at 0.01, but statistically insignificant. These results

suggest that the transfer of sovereignty increased the YoY GDP growth of Hong Kong by 1

to 2 percentage points, although statistical significance depends on the number of principal

components used.

We compute the HCW estimate using all countries from the control group donor pool.

The estimated treatment effect has a mean of -0.036, with a SD of 0.089.21 This suggests

that the transfer of sovereignty reduced Hong Kong’s GDP growth (although the SD is large).

The Bai (2009) estimate is negative at -0.029 and statistically significant at the 1 percent

level. By contrast, the conventional DID estimate is 0.001 and statistically insignificant.

The right panel reports the estimated effect of economic integration, which is more co-

herent across different methods. The CCEPC-DID and CCE-DID estimates range from 2.2

to 4.0 percentage points and are all statistically significant at the 1 percent level. The HCW
19In the economic integration sample, we discard Norway because its growth trajectory is very close to Hong

Kong (closer than any other country in the sample). We suspect that this is unadjusted Hong Kong data.
Hence we use 23 control countries in this sample.

20For the HCW (or synthetic control) method, we report the sample standard deviation (SD) of the treatment
effect estimate over the post-intervention periods. For other methods, we compute the standard error by
bootstrapping.

21The original estimate in their paper uses a model selection procedure to select a subset of countries from
the control group donor pool. Using AIC, their estimate was -0.0403 with a SD of 0.0815.
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estimate is 0.024, with a SD of 0.024.22 The Bai (2009) and DID estimates are 0.035 and

0.032, respectively, and are both statistically significant at the 1 percent level. These results

provide strong evidence that CEPA increased Hong Kong’s GDP growth.

Figure 1 compares Hong Kong’s actual GDP growth with predictions from the HCW and

CCEPC-DID estimators. Figure 1(a) compares the results in political integration data. The

actual growth was characterized by a large negative spike between 1998 and 2000. This was

caused by the Asian Financial Crisis – shortly after the change of sovereignty in July 1997,

the Crisis broke out in the second half of 1997, which resulted in severe economic downturn

in the region.

The graph also shows markedly different predictions between HCW and CCEPC-DID esti-

mators. The HCW estimator constructs a “synthetic” Hong Kong by regressing Hong Kong’s

GDP growth on the GDP growth of control group countries during the pre-intervention pe-

riod. The slope coefficients are interpreted as weights of the control group countries. As-

suming the weights are time-invariant, the counterfactual predicted growth of Hong Kong

during the post-intervention period is constructed (extrapolated). The treatment effect is

obtained from the average difference between counterfactual and actual growth during the

post-intervention period. As the graph shows, the predictions match the data very well dur-

ing the pre-intervention period. However, predicted growth continues to go up in 1998, while

in reality Hong Kong’s growth suffers a heavy blow from the Asian Financial Crisis. During

the recovery between 2000 and 2003, the predicted and actual growth become close again.

Because the predicted (counterfactual) growth is far above actual growth in 1998 and 1999,

it explains why the estimated treatment effect was negative.

The CCEPC-DID estimator, on the other hand, uses all time periods of control group

countries to construct factor proxies, which are in the form of weighted control units. Because

information from all time periods are used, the model is able to pick up the most important

factors during the entire period (not just the pre-intervention period), namely, systematic

changes that occur during the Crisis in 1998-1999. As a result, predictions during the post-

intervention period match the data very well, albeit at the cost of worse goodness-of-fit during

the pre-intervention period. In addition, because the post-intervention period is within the

estimation sample, the model generates two predictions during this period: (1) predicted
22Using AIC, their estimate was 0.0379 with a SD of 0.0151.
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growth when there is a treatment effect; (2) counterfactual growth when there is no treatment

effect. The former allows us to better assess the goodness-of-fit of the model to the data.

These patterns in the graph explain why we obtained a small positive treatment effect from

the CCEPC-DID estimator.

Figure 1(b) compares the results in economic integration data. In this data, because

the Crisis occurred during the pre-intervention period, and the post-intervention period was

relatively stable, the HCW estimator generates post-intervention predictions that are more in

line with predictions from the CCEPC-DID estimator. This also explains why the treatment

effect estimates are coherent across different methods in this data.

Table V reports the country weights for the first two principal components computed

from the CCEPC-DID estimator. Each principal component consists of weighted control

group countries that reflect (linear combinations of) the unobserved factors. In political inte-

gration data, the first principal component assigns the largest weight to China, Indonesia and

Malaysia (0.151 each), followed by Singapore (0.127), Korea (0.121), Taiwan (0.087), Thai-

land (0.086), Philippines (0.083), US (0.036) and Japan (0.009). These weights correspond

closely to the pattern of geographical and economic relationships in the region. They also

reflect the impact of the Crisis on the most severely affected countries – Indonesia, Korea,

Malaysia, Philippines, and Thailand. The second principal component assigns the largest

positive weight to China and the largest negative weight to Indonesia. The heavy weight on

Indonesia is due to the fact that it was most severely affected by the Crisis – the Indonesian

rupiah depreciated against USD by over 80 percent from 1997 to 1998, followed by the fall

of a three-decade long presidency by Suharto (and subsequent independence of East Timor).

The heavy positive weight on China is probably due to its resilience to the Crisis and its

unique development scenario relative to other countries in the region.

The country weights computed from the HCW estimator are different. In political in-

tegration data, the weights are: China (-0.018), Indonesia (-0.054), Japan (-0.619), Korea

(-0.401), Malaysia (-0.050), Philippines (-0.115), Singapore (0.021), Taiwan (1.060), Thai-

land (-0.041), US (0.570).23 Taiwan, Japan and the US have the largest absolute weights,

while mainland China, which has a close economic relationship with Hong Kong, has the
23In contrast to Abadie, Diamond and Hainmueller (2010), their weights for control group units are not

constrained between 0 and 1, and they do not need to sum to 1. When AIC is used, the weights in their paper
were Japan (-0.69), Korea (-0.3767), US (0.8099), Philippines (-0.1624), and Taiwan (0.6189).
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smallest absolute weight. Thus, it is more difficult to attach a direct economic interpretation

to these weights – the weights are only chosen to mimic Hong Kong’s GDP growth as closely

as possible during the pre-intervention period.

In economic integration data, the pool of control countries is larger and the sample period

is longer, hence the country weights can be different. Nevertheless, the first principal com-

ponent assigns weights most heavily to Malaysia (0.106), China (0.103), Indonesia (0.095),

Singapore (0.086) and Korea (0.067). The five countries with the smallest weights are Ger-

many (0.007), Japan (0.008), Switzerland (0.013), Italy (0.014), and France (0.016). Inter-

estingly, Anglo-Saxon countries have large weights among the Western countries: Australia

(0.035), Canada (0.037), New Zealand (0.039), UK (0.034) and US (0.024). The second prin-

cipal component gives the largest absolute weights to Indonesia (-0.448), Thailand (-0.338)

and China (0.337). By contrast, in the HCW estimator, the five countries with the largest

absolute weights are Austria (-0.9198), Germany (-0.7676), Netherlands (-0.6343), Finland

(-0.6835), and Mexico (0.5773). The five countries with the smallest absolute weights are UK

(0.000), Taiwan (0.002), Switzerland (0.006), France (0.043) and China (0.064).24

Figure 2 provides further evidence by plotting the principal components (i.e., weighted

GDP growth of control group countries) over time. The patterns confirm the economic

interpretation of the country weights discussed above. In political integration data (Figure

2(a)), the first principal component moves downward in 1998, then recovers in 1999 and

2000. The second principal component has a large upward spike in 1998-1999, which reflects

the disproportionate impact on Indonesia during the Crisis (note that Indonesia’s weight is

negative). In economic integration data (Figure 2(b)), the patterns of the first two principal

components are similar to Figure 2(a), while the third principal component exhibits wide

swings in 1997-2001.

Finally, Table VI reports the proportion of variance of control group countries’ GDP

growth that can be explained by the principal components. In both political and economic

integration data, around 99 percent of the variance can be explained by the first three prin-

cipal components.
24When AIC is used, the weights in their paper were Austria (-1.2949), Germany (0.3552), Italy (-0.5768),

Korea (0.3016), Mexico (0.234), Norway (0.2881), Switzerland (0.2436), Singapore (0.2222), and Philippines
(0.1757).
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4.2 Application 2: Cigarette Sales

We then apply our estimators to the data in Abadie, Diamond and Hainmueller (2010),

who study the effect of a large-scale tobacco control program (“Proposition 99”) on levels

of California’s cigarette sales. Their data set contains per-capita cigarette sales (packs) in

39 states including California, from 1970 to 2000. As an initiative statute in California,

Proposition 99 was the first modern-time large-scale tobacco control program in the US. It

was passed in November 1988 and went into effect in January 1989. The key element was a

25-cent increase of per pack state excise tax on the sale of tobacco cigarettes within California,

with similar tax on other tobacco products. Revenue generated by the act was earmarked

for various environmental and health care programs, and anti-tobacco advertisements. In

the analysis, they define 1970-1988 as pre-intervention periods (19 years), and 1989-2000 as

post-intervention periods (12 years). The control group consists of 38 states that did not

adopt large-scale tobacco control programs between 1970 and 2000.

Table VII compares the treatment effect estimates obtained from different methods. The

left panel reports the estimated effect of the program on the level of per-capita cigarette sales

in California. This is the outcome variable analyzed by Abadie, Diamond and Hainmueller

(2010). With one principal component, the CCEPC-DID estimate is -19.97 and statistically

significant at the 1 percent level. However, the estimate becomes closer to zero when more

principal components are used. When 10 principal components are used, the estimate is -5.39

and statistically significant at the 5 percent level. The other methods produce large negative

estimates that are statistically significant at the 1 percent level. The CCE-DID estimate,

which is based on equal weights among control states, is −20.62. The estimates obtained by

synthetic control (Abadie, Diamond and Hainmueller (2010)), Bai (2009), and DID methods

are -19.48, -57.23, and -27.35, respectively.25

As the simulation results in the Section 3 showed, sensitivity of CCEPC-DID estimates

to the number of principal components may be an indication that nonstationary factors

are present. Indeed, the graphs of the time series of cigarette sales in most states exhibit
25Similar in spirit to the HCW method, we use levels of per-capita cigarette sales in 1970, 1971, ..., 1988

as matching variables. In Abadie, Diamond and Hainmueller (2010), there are seven matching variables: per-
capita cigarette sales in 1975, 1980, and 1988, and averages of Ln(GDP per capita), percent of the population
aged 15-24, retail cigarette price, and per-capita beer consumption. When the above matching variables are
used, the estimated treatment effect is -17.96 with a SD of 5.80.
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substantial persistent long-run movements. To formally test for nonstationarity in cigarette

sales data, we conduct the Breitung-Das (2005) panel unit root test on two subpanels as

defined by US Census Regions: (i) West or Mid-West (20 states); (ii) South or Northeast

(19 states).26 In both panels, the test fails to reject the null hypothesis that there is unit

root in a subset of states in the data. The p-values are 0.6751 and 0.9725, respectively. This

suggests that stochastic trends are a prevalent feature in the data.

Nonstationarity suggests that the CCEPC-DID estimator with multiple principal com-

ponents should generate the most plausible treatment effect estimate. The other methods

may have overestimated the effect of the tobacco control program by attributing stochastic

trends to the treatment effect. This also explains why the treatment effect estimate dimin-

ishes quickly when more principal components are used – multiple principal components are

required to capture all the nonstationary factors, as the simulation results have shown.

We also report estimates from detrended cigarette sales data. The detrended data is

constructed from subtracting per-capita cigarette sales by its cross-sectional mean. After

detrending, the CCEPC-DID estimates become closer to zero when as few as two principal

components are used. Nevertheless, with 10 principal components, the estimate is -4.69

and ramain statistically significant at the 5 percent level. The CCE-DID estimator becomes

infeasible due to detrending, while the synthetic control and DID estimates are invariant to

detrending. The Bai (2009) estimate becomes closer to zero at -39.73.

The right panel reports the estimated effect of the program on the yearly change of per-

capita cigarette sales in California. The first-order difference removes nonstationarity from

the series. In addition, this can be a reasonable specification if the price of cigarettes adjusts

slowly to the tax increase, or anti-tobacco advertisements take time to generate an impact.

The estimates are more coherent across different methods. The CCEPC-DID estimates lie

between -1.69 to -1.90 (all statistically significant at the 1 percent level) when 1 to 5 principal

components are used. At 10 principal components, the estimate is -0.74 and statistically

insignificant. The CCE-DID, synthetic control, Bai and DID estimates are -1.19, -1.94, -3.01

and -0.75, respectively. Except for synthetic control, the other estimates are statistically

significant at the 1 percent level. When the yearly change data are detrended, the CCEPC-

DID estimates become closer to zero (ranging between -0.43 and -0.89) and the same is true
26The test allows for cross-sectional dependence and is based on (T,N)→seq ∞.
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for the Bai estimate (-2.16). the synthetic control and DID estimates remain unchanged.

Comparing the estimation results from level and yearly change data, the CCEPC-DID

method with multiple principal components yields the most coherent estimates between both

data sets. For instance, consider the estimate of -0.74 (10 PCs) in yearly change data. This

implies that during the 12 years of post-intervention period, the program changed per-capita

cigarette sales by an average level of −0.74×(1+2+ ...+12)÷12 = −4.81 packs. This is close

to the estimate of -5.39 (10 PCs) in level data. By contrast, other methods yield less coherent

estimates. The largest discrepancy comes from DID; from the estimate in yearly change data

(-0.75), the implied change in average level is −0.75× (1 + 2 + ...+ 12)÷ 12 = −4.88 packs,

which is substantially lower than the estimate of -27.35 in level data.

Figure 3 compares California’s actual level of per-capita cigarette sales with predictions

from synthetic control and CCEPC-DID methods. Actual per-capita cigarette sales were

relatively stable at above 120 packs before 1980, and reduced substantially in the next 20

years to 40 packs in 2000. The rate of decline accelerated around 1988. The synthetic control

method yields an excellent fit to the data during the pre-intervention period, and “synthetic

California” (no treatment) is predicted to have around 80 packs of per-capita cigarette sales

during the post-intervention period. When one principal component is used, predictions from

the CCEPC-DID method fit the data reasonably well during the pre-intervention period. Af-

ter intervention, the method generates both a with-treatment prediction and a counterfactual

prediction (i.e., no treatment). The counterfactual prediction is very close to the prediction

from synthetic control, while the with-treatment prediction underpredicts cigarette sales be-

tween 1989 and 1993 and overpredicts afterwards. When 10 principal components are used,

predictions from the CCEPC-DID method are quite different. First, it has a close fit to the

data in all periods. Second, the counterfactual prediction remains only around 5 packs above

the actual value throughout the post-intervention period. Figures 4(a) and (b) compare Cal-

ifornia’s actual yearly change of per-capita cigarette sales with predictions from synthetic

control and CCEPC-DID methods. Both synthetic control and CCEPC-DID methods pre-

dict the pre-intervention outcomes reasonably well. The predictions from CCEPC-DID also

do not change substantially when more principal components are used.

Table VIII report the state weights in the first two principal components from the CCEPC-

DID estimator. If all states have equal weights, the weight should be 1 ÷ 38 = 0.0263. In
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level data, the standard deviation of state weights in first principal component is merely

0.006. The first principal component assigns the largest weights to New Hampshire (0.048),

Kentucky (0.041) and North Carolina (0.037). Interestingly, these states rank the top three

in average per-capita cigarette sales during the sample period. In the data, the overall

average level is 118.89 packs; the above states have an average level of 213, 187 and 164

packs, respectively. The lowest weights are assigned to Utah (0.014), New Mexico (0.019)

and North Dakota (0.022). In the data, these states rank the bottom three in average

per-capita cigarette sales (63, 84 and 98 packs, respectively). Therefore, the first principal

component can be interpreted as the national trend of cigarette sales. The second principal

component, on the other hand, assigns large positive weights to a number of adjacent states in

the southern region (Alabama, Arkansas, Kentucky, Mississippi, South Carolina, Tennessee,

West Virginia). These states were less subject to the national reduction in cigarette sales that

started in the mid-1980s. This regional trend is picked up by the second principal component.

In yearly change data, the first principal component assigns the largest weights to New

Hampshire (0.113), North Carolina (0.089) and Kentucky (0.073). Again, larger weights

are assigned to states that have higher levels of per-capita cigarette sales, which also tend

to have larger yearly changes in sales. The second principal component shows a different

picture. Some adjacent states have different signs of weights – in particular, New Hampshire

and Rhode Island (-0.917 vs 0.917), as well as Nevada, Idaho and Wyoming (-0.505 vs -0.453

vs 0.814). This reflects cross-border purchases – individuals can go to a neighboring state

to purchase cigarettes, resulting in opposite yearly changes in cigarette sales between two

adjacent states.

In contrast to the principal components above, the state weights from the synthetic control

method have a less direct interpretation, although all weights are restricted between 0 and 1

and they sum to 1. For instance, in level data, the largest weights are assigned to Utah (0.394),

Montana (0.232) and Nevada (0.205), and 32 states have a weight of 0.27 The weights are

chosen such that the weighted control units best mimic California during the pre-intervention

period. In yearly change data, the weights are spread out among more states. The largest

weights are assigned to Connecticut (0.173), Nevada (0.161) and Utah (0.14), and 28 states
27When the matching variables in Abadie, Diamond and Hainmueller (2010) are used, the state weights

for synthetic California are Colorado (0.164), Connecticut (0.069), Montana (0.199), Nevada (0.234), Utah
(0.334), other states zero.
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have a weight of 0.

Figures 5(a) and (b) plot the principal components over time. In level data (Figure 5(a)),

the first principal component, which represents the national trend, increases between 1970 and

1977, then declines afterwards. The second principal component, which represents the trend

in the Southern region, increases from the 1970s and becomes steady starting from the mid-

1990s. The third and fourth principal components also exhibit long-run tendencies. In yearly

change data (Figure 5(b)), the first principal component captures the national trend – it is

positive between 1970 and 1977, then becomes negative or close to zero in subsequent years.

The second and third principal components tend to exhibit more short-term fluctuations.

Table IX reports the proportion of variance in cigarette sales of the control states that

can be explained by the principal components. In level data, the first principal component

explains 99.95 percent of the variance. The extremely high proportion provides further evi-

dence that the principal component picks up stochastic trends, which dominate the stationary

factors in the model. By contrast, in yearly change data, the first principal component ex-

plains 56.76 percent of the variance, and the first five principal components together explain

88 percent of the variance.

5 Conclusion

In this paper, we developed an estimator (CCE-DID / CCEPC-DID) for program evaluation

when outcomes could be affected by unobserved common factors. The estimator was suitable

for difference-in-differences (DID) style research designs. We derived consistency and asymp-

totic distributions under not only stationary factors but also nonstationary factors with any

integration order. As such, our estimator broadens the scope of existing techniques such as

Bai (2009) and synthetic control methods (Abadie, Diamond and Hainmueller (2010), Hsiao,

Ching and Wan (2012)), which were limited to the case of stationary factors. Our estima-

tor exhibited excellent small-sample performance and was robust across a variety of sample

size and factor specifications, especially when stochastic trends were present. We applied

our estimator to two data sets, one on GDP growth and another on cigarette sales. In the

first application, our estimator found a weak positive effect of political integration on Hong

Kong’s GDP growth, after taking into account of the large shocks from the Asian Finan-
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cial Crisis shortly after the policy intervention (i.e., return of sovereignty to China). In the

second application, we found substantial evidence of stochastic trends in levels of cigarette

sales. Our estimator revealed a smaller impact of California’s tobacco control program on

cigarette sales. By contrast, existing methods tended to attribute these stochastic trends to

the treatment effect, resulting in overestimation of the effect of the program.
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6 Appendix

6.1 Identification under Assumption 3’

For our purpose, we will need the following linear algebra result on the reduced singular value
decomposition of a rank-deficient rectangular matrix (e.g., p.28 of Trefethen and Bau, 1997).

Lemma 1 (reduced SVD) Given an m × n matrix M that is of rank p, where 0 < p ≤
min(m,n), there exists an m × p matrix U , a p × p nonsingular matrix Σ, and an n × p
matrix V , such that U and V are orthogonal and of full column rank, with U ′U = V ′V = I,
and that M = UΣV ′. The latter implies that Σ = U ′MV is a diagonal, nonsingular matrix.

Suppose the m×NC matrix µC has rank p ≤ m (Assumption 3’(i)). By the singular value
decomposition of the m × NC matrix µC , there exists an m × p orthogonal matrix R (with
R′R = Ip×p), a p × p nonsingular diagonal matrix Σ, and an NC × p orthogonal matrix W̃
(with W̃ ′W̃ = Ip×p) such that µC = RΣW̃ ′. This implies that Σ = R′µCW̃ is a nonsingular
diagonal matrix. Let S be a p × p diagonal matrix where the (k, k) element is the sum of
the kth column of W̃ . Note that S is nonsingular because W̃ has full column rank. Then
the matrix defined by W = W̃S−1 has columns that sum to one. Now, we may express
µC = RΣW̃ ′ = R(ΣS)W ′ = RΣ̃W ′, where Σ̃ = ΣS is a nonsingular diagonal matrix.

Given that rank(µC) = p, we can identify at most p linear combinations of the factors
given by R′F , where R is determined by the left orthogonal matrix in the SVD of µC . We
can correspondingly form p weighted averages of control group outcomes, where the weights
are determined by the right orthogonal matrix in the SVD of µC . So we have

W ′yCt = W ′µ′Cft +W ′εCt

= (S−1W̃ ′)(W̃ΣR′)ft +W ′εCt

= S−1ΣR′ft +W ′εCt.

Since S and Σ are nonsingular and diagonal, it follows that S−1Σ = ΣS−1 = (R′µCW̃ )S−1 =
R′µCW is invertible and so we obtain

R′ft = (S−1Σ)−1W ′(yCt − εCt)
= Σ−1SW ′(yCt − εCt)
= Σ−1SW ′yCt − Σ−1SW ′εCt

= Σ−1SW ′yCt +Op

(
1√
NC

)
,

so that Σ−1SW ′yCt acts as a proxy for R′ft for large NC . The last line follows from Assump-
tion 5. Substituting into (1), and by Assumption 3’(ii)’s proportionality condition µi = Rξi
(R is determined by the left orthogonal matrix in the SVD), we have, for each treated unit
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i ∈ I,

yit = µ′ift + ∆i1{t>T0} + εit

= ξ′iR
′ft + ∆i1{t>T0} + εit

= ξ′iΣ
−1SW ′yCt + ∆i1{t>T0} + [εit − ξ′iΣ−1SW ′εCt].

This motivates the following regression for treatment unit i ∈ I,

yit = α′iW
′yCt + δi1{t>T0} + eit.

Comparing the DGP with the regression of yit, the regression coefficients are given by

αi = SΣ−1ξi = S(R′µCW̃ )−1ξi,

δi = ∆i.

We therefore see that the individual treatment effect ∆i can be identified through the regres-
sion coefficient δi under Assumption 3’.

6.2 Proof of Proposition 1

Assume that T is fixed throughout the proof. Suppose w1, . . . , wp are p eigenvectors of yCy
′
C

T r̄ .
The p eigenvectors are linearly independent, orthogonal to each other, and can be normalized
so that all columns sum to one, in the sense that

∑NC
i=1wij = 1 for all j = 1, . . . , p, and

w′jwk = 0 for all j 6= k. Let c1, . . . , cp be the p largest eigenvalues, all of which are non-zero
by the rank condition on yC . Let C be the p×p diagonal matrix formed by these eigenvalues.
By the definition of eigenvalue and eigenvector, we have

W ′
yCy

′
C

T r̄
= CW ′.

We may post-multiply the last line by W and obtain

W ′
yCy

′
C

T r̄
W = CW ′W.

It is easy to see that CW ′W , and hence W ′yCy′CW , is invertible. By Assumption 5, and
using (4), we obtain

W ′yCy
′
CW = W ′µ′CFF

′µCW +W ′εCε
′
CW

= W ′µ′CFF
′µCW +Op

(
1
NC

)
. (23)

Now, let NC →∞ and discuss the full rank and rank deficient cases separately.
(a) When p ≥ m, then noting that µCW is m× p, it is immediate that rank(µCW ) ≤ m

for large enough NC . Now, suppose the contrary that rank(µC) < m. Since rank(FF ′) = m
by Assumption 2, the rank of W ′µ′CFF

′µCW must be less than m, which is a contradiction.
Therefore µC must have full rank, i.e., rank(µC) = m. It then follows from Assumption 4(iii)
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that rank(µCW ) = m.
(b) When p < m, we see that W ′yCy′CW is of rank p (as both yC and W are of rank p,

and all the p eigenvalues are non-zero). It follows from (23) that W ′µ′CFF
′µCW is of rank p

for large NC , and under Assumption 4(iii), µC is also of rank p. Applying the reduced form
SVD to µC (see the above lemma), there exists a p × p nonsingular diagonal matrix Σ, and
an m×p matrix R and an NC ×p matrix W , where the columns of R and W are orthogonal,
and the columns of W sum to one, such that µC = RΣW ′. Pre-multiplying by R′ and post-
multiplying by W , we obtain Σ = R′µCW , which is invertible and so rank(R′µCW ) = p as
NC →∞.

6.3 Proof of Theorems 1 and 2

6.3.1 Preliminaries

Consider the following decomposition of δ̂i, obtained by substituting (11) into (12):

δ̂i − δi =
(
1′postMȳC1post

)−1 1′postMȳCei. (24)

The first task is to evaluate the right hand side of (24). Using (3) and the definition of
ȳC , we obtain the weighted control group observations in matrix form

ȳC
T×m

:= y′C
T×NC

· W
NC×m

= F ′
T×m

· µ̄C
m×m

+ ε̄C
T×m

,

where µ̄C = µCW in the full rank case28, and ε̄C = ε′CW . For now, we treat W as given in
the following proof. The effect of estimation error of W on δ̂i is discussed in section 6.3.4.

Now, let us compute the components in (24),

1′postȳC = 1′postF
′µ̄C + 1′postε̄C ,

ȳ′C ȳC = µ̄′CFF
′µ̄C + µ̄′CF ε̄C + ε̄′CF

′µ̄C + ε̄′C ε̄C ,

ȳ′C1post = µ̄′CF1post + ε̄′C1post.

Recall that the matrix (µ̄C)−1 exists in the full rank case. Now we have

1′postMȳC1post
=1′post1post − 1′postȳC(ȳ′C ȳC)−1ȳ′C1post
=T1 − [1′postF

′µ̄C + 1′postε̄C ][µ̄′CFF
′µ̄C + µ̄′CF ε̄C + ε̄′CF

′µ̄C + ε̄′C ε̄C ]−1

× [µ̄′CF1post + ε̄′C1post]

=T1 − [1′postF
′ + 1′postε̄C µ̄

−1
C ][FF ′ + F ε̄C µ̄

−1
C + (µ̄′C)−1ε̄′CF

′ + (µ̄′C)−1ε̄′C ε̄C µ̄
−1
C ]−1

× [F1post + (µ̄′C)−1ε̄′C1post]. (25)

28In the rank deficient case, simply set µ̄C = R′µCW , where R is an m× p matrix identified by the singular
value decomposition of µC . The p× p square matrix µ̄C is invertible. In this case, the weighted control group
observations can be expressed into ȳC = y′C ·W = (F ′R) · µ̄C + ε̄C .
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Also,

1′postMȳCei

=1′postei − 1′postȳC(ȳ′C ȳC)−1ȳ′Cei (26)

=1′postei − [1′postF
′ + 1′postε̄C µ̄

−1
C ][FF ′ + F ε̄C µ̄

−1
C + (µ̄′C)−1ε̄′CF

′ + (µ̄′C)−1ε̄′C ε̄C µ̄
−1
C ]−1

× [Fei + (µ̄′C)−1ε̄′Cei]. (27)

6.3.2 Nonstationary case

Suppose rmin = min(r1, . . . , rm) > 0. Let us define the m×m diagonal matrices

Υ̃ =


T r1 O

T r2

. . .
O T rm

 ,

Υ̃1 =


T r11 O

T r21
. . .

O T rm1

 .
Using the newly defined matrices, we apply the following normalizations:

1
T1

1′postMȳC1post =1−

[
1′postF

′Υ̃−1
1√

T1
+

1′postε̄C√
T1

µ̄−1
C Υ̃−1

1

]
Υ̃1Υ̃−1

× Υ̃[FF ′ + F ε̄C µ̄
−1
C + (µ̄′C)−1ε̄′CF

′ + (µ̄′C)−1ε̄′C ε̄C µ̄
−1
C ]−1Υ̃

× Υ̃−1Υ̃1

[
Υ̃−1F1post√

T1
+ Υ̃−1(µ̄′C)−1 ε̄

′
C1post√
T1

]
,

and

1√
T1

1′postMȳCei =
1′postei√
T1
−

[
1′postF

′Υ̃−1
1√

T1
+

1′postε̄C√
T1

µ̄−1
C Υ̃−1

1

]
Υ̃1Υ̃−1

× Υ̃[FF ′ + F ε̄C µ̄
−1
C + (µ̄′C)−1ε̄′CF

′ + (µ̄′C)−1ε̄′C ε̄C µ̄
−1
C ]−1Υ̃

×
[
Υ̃−1Fei + Υ̃−1(µ̄′C)−1ε̄′Cei

]
.

Given rmin > 0, the first term strictly dominates the other terms in stochastic order in each
of the six square brackets in the above two expressions (by lemmas 2-4 in the Supplementary
Results). This is valid regardless of whetherNC is kept finite or tends to infinity. In particular,
the measurement error due to factor proxies, as captured by the term Υ̃−1(µ̄′C)−1ε̄′Cei, is
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dominated by Υ̃−1Fei in stochastic order. We can thus simplify the two expressions into

1
T1

1′postMȳC1post =1−

[
1′postF

′Υ̃−1
1√

T1
+ op(1)

]
Υ̃1Υ̃−1

× [Υ̃−1FF ′Υ̃−1 + op(1)]−1

× Υ̃−1Υ̃1

[
Υ̃−1

1

F1post√
T1

+ op(1)
]
, (28)

and

1√
T1

1′postMȳCei =
1′postei√
T1
−

[
1′postF

′Υ̃−1
1√

T1
+ op(1)

]
Υ̃1Υ̃−1

× [Υ̃−1FF ′Υ̃−1 + op(1)]−1

×
[
Υ̃−1Fei + op(1)

]
, (29)

as T1 →∞.
Let us define the following probability limits.

s̃′F := plim
1′postF

′Υ̃−1
1√

T1
, (30)

s̃FF ′ := plim Υ̃−1FF ′Υ̃−1, (31)

s̃Fei := plim Υ̃−1Fei, (32)

σ2
ei := lim

1
T1

∑
s,t∈T post

Cov(eis, eit). (33)

By lemmas 2-4 in the Supplementary Results, all the terms defined in (30)-(33) contain
elements that are Op(1).29 When κ = 0, s̃F is op(1) by Lemma 4. Note that s̃FF ′ is invertible
by Assumption 2(iii).

The first term in the normalized numerator, 1′postei/
√
T1, is Op(1) and converges in dis-

tribution to σeiZ by the Central Limit theorem as T1 → ∞. The quantity σ2
ei , defined in

(33), is the long-run variance of eit, computed over the post-intervention periods for each i.
It is obtained from

σ2
ei = lim

T1→∞
V ar

(
1√
T1

1′postei

)
= lim

T1→∞

1
T1

1′postE(eie′i)1post

= lim
T1→∞

1
T1

∑
s,t∈T post

Cov(eis, eit).

29For instance, to see that s̃Fei is Op(1), note that Υ̃−1Fei = Υ̃−1Fεi − Υ̃−1Fε′CW (µCW )−1µi, both of
which are Op(1) for finite NC by lemma 3.
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Define the limit

Π̃r = lim Υ̃1Υ̃−1 =


κr1 O

κr2

. . .
O κrm

 ,
where κ = limT1/T . It is then easy to see that

plim
1
T1

1′postMȳC1post = 1− s̃′F Π̃rs̃
−1
FF ′Π̃rs̃F ,

plim
1√
T1

1′postMȳCei = σeiZ − s̃′F Π̃rs̃
−1
FF ′Π̃rs̃Fei .

Suppose there exists rj = 0 for some but not all j = 1, . . . ,m. In this case, we introduce
two alternative normalizing matrices

Υ =


T r1∨0.5 O

T r2∨0.5

. . .
O T rm∨0.5

 ,

Υ1 =


T r1∨0.5

1 O

T r2∨0.5
1

. . .
O T rm∨0.5

1

 .
Here a ∨ b = max(a, b). Note that Υ is invertible. Now, those terms in (25) and (27) that
contain ε̄C are strictly dominated by the first or second sample moments of the factor(s) with
the maximal integration order. This is valid regardless of whether NC is kept finite or tends to
infinity. We obtain the stated results by following the previous arguments with all Υ̃ replaced
by Υ, all Υ̃1 replaced by Υ1, Π̃r by Πr := lim Υ1Υ−1, s̃′F by s′F := plim 1′postF

′Υ−1/
√
T1,

s̃FF ′ by sFF ′ := plim Υ−1FF ′Υ−1, and s̃Fei by sFei := plim Υ−1Fei. By lemmas 2-4 in the
Supplementary Results, the resulting terms after replacements contain elements that are at
most Op(1).

6.3.3 Stationary case

Suppose that all r1 = . . . = rm = 0, i.e., all m factors are stationary. The decomposition of
δ̂i is slightly different from the nonstationary case. Starting from (24) and separating out the
two terms in the numerator as in (26), we obtain

δ̂i − δi − bi =
1′postei

1′postMȳC1post
, (34)
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where bi is the asymptotic bias given by

bi =
−1′postPȳCei

1′postMȳC1post
,

and PȳC = ȳC(ȳ′C ȳC)−1ȳ′C .
Let us first analyse the asymptotic bias. The denominator, after normalizing appropri-

ately, becomes

1
T1

1′postMȳC1post =1− T1

T

[
1′postF

′

T1
+

1′postε̄C
T1

µ̄−1
C

]
×
[
FF ′

T
+
F ε̄C
T

µ̄−1
C + (µ̄′C)−1 ε̄

′
CF
′

T
+ (µ̄′C)−1 ε̄

′
C ε̄C
T

µ̄−1
C

]−1

×
[
F1post
T1

+ (µ̄′C)−1 ε̄
′
C1post
T1

]
.

Let us consider the limit of each term in the above expression as T1, T →∞. By Assumption
2(ii), the first two population moments of ft exist and remain constant over time, and hence
their sample moments F1post/T1 and FF ′/T converge to E(ft) and E(ftf ′t), respectively.
Next, the post-intervention sample mean 1′postε̄C/T1 converges to E(ε̄Ct), which is zero by
Assumption 1(i). Third, the cross sample moment F ε̄C/T converges to E(ftε̄Ct), which is
zero by Assumption 1(i). Fourth, the second moment ε̄′C ε̄C/T converges to the limiting m×m
covariance matrix Vε̄C := plim ε̄′C ε̄C

T , with its (k, `) element given by

vk` = lim
T→∞

1
T

∑
i,j∈C

T∑
t=1

wikwj`σij,tt.

By Assumption 5(i), we see that vk` is O (1) as T → ∞. Note that the factor loading
matrix µ̄C = µ′CW remains fixed for finite NC . As a result, the denominator converges to,
as T1, T →∞,

1− κE(f ′t)[E(ftf ′t) + (µ̄′C)−1Vε̄C µ̄
−1
C ]−1E(ft). (35)

The numerator, after appropriate normalization, becomes

− 1
T1

1′postPȳCei =− 1
T1

1′postȳC(ȳ′C ȳC)−1ȳ′Cei

=−
[

1′postF
′

T1
+

1′postε̄C
T1

µ̄−1
C

]
×
[
FF ′

T
+
F ε̄C
T

µ̄−1
C + (µ̄′C)−1 ε̄

′
CF
′

T
+ (µ̄′C)−1 ε̄

′
C ε̄C
T

µ̄−1
C

]−1

×
[
Fei
T

+ (µ̄′C)−1 ε̄
′
Cei
T

]
.

The asymptotic limits in the first two brackets were the same as those in the denominator,
so let us focus on the terms in the third square bracket. Recall that ei = [ei1, . . . , eiT ]′

is the T × 1 vector of regression errors given by ei = εi − ε̄′C(µ̄C)−1µi, where ε̄C = W ′εC
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(m × T ) and µ̄C = µ′CW (m × m). The first term in the third square bracket, Fei/T ,
converges to zero, as we have E(fteit) = E(ftεit) − E(ftε̄′Ct)(µ̄C)−1µi = 0 by Assumption
1(i). This holds for finite NC . The second term, however, tends to a non-zero limit, as
E(ε̄Cteit) = E(ε̄Ctεit)− E(ε̄Ctε̄′Ct)(µ̄C)−1µi 6= 0 in general.

Combining the above results, the asymptotic bias of δi is given by

bi =
−E(f ′t)[E(ftf ′t) + (µ̄′C)−1Vε̄C µ̄

−1
C ]−1(µ̄′C)−1E(ε̄Cteit)

1− κE(f ′t)[E(ftf ′t) + (µ̄′C)−1Vε̄C µ̄
−1
C ]−1E(ft)

.

Under scenario (a), From (7), we see that ε̄Ct = Op

(
1√
NC

)
, so that E(ε̄Cteit) → 0

and Vε̄C → 0 as NC → ∞. It follows that bi → 0 and its denominator converges to 1 −
κE(f ′t)E(ftf ′t)

−1E(ft).
Under scenario (b), we readily see that, when E(ft) = 0, the asymptotic bias bi is exactly

equal to zero with its denominator equal to one. This holds for finite NC .
As a result, the asymptotic bias is zero under both scenarios.
Finally, by normalizing the terms in (34) appropriately, we obtain

√
T1(δ̂i − δi) =

1√
T1

1′postei
1
T1

1′postMȳC1post
. (36)

An application of the Central Limit theorem and Slutsky’s theorem yields the stated result.

6.3.4 Estimation error of W

The above proof (for both the nonstationary and stationary cases) supposes that the NC×m
weighting matrix W is treated as given. In this sub-section we want to argue that the
estimation error of W due to sample variation does not affect the asymptotic distribution of
δ̂i for a given control group with a given size. Recall that the columns of W are the first
m eigenvectors of the NC × NC sample covariance matrix SC := yCy

′
C/T

r̄. Denote Ω be
the population counterpart of W , consisting of m columns of eigenvectors of the population
covariance matrix ΣC := E(yCy′C/T

r̄). Let ωik be the (i, k) element of Ω. It is easy to see, by
a strong law of large numbers and under Assumption 5(i), that SC = ΣC + op(1) as T →∞.
It follows that W = Ω + op(1) as T →∞.

In the nonstationary case, the only dominating term in (28) and (29) that involves W
is the m × m matrix Υ̃−1Fei. Using the definition of ei, it is decomposed into Υ̃−1Fei =
Υ̃−1Fεi− Υ̃−1F ε̄′C(µ̄C)−1µi. Only the second term is a function of W . We may compute and
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decompose the (j, k) element of F ε̄′C as follows

[F ε̄′C ](j,k) = [Fε′CW ](j,k)

=
∑
i∈C

wik

T∑
t=1

fjtεit

=
∑
i∈C

[
ωik

T∑
t=1

fjtεit + (wik − ωik)
T∑
t=1

fjtεit

]

=
∑
i∈C

[
ωik

T∑
t=1

fjtεit + op(1)

]

as T → ∞. The last line follows from wik − ωik = op(1) for each i. In other words, for any
given NC , we have Fε′CW = Fε′CΩ + op(1) as T → ∞. Similarly, we obtain µ̄C = µCW =
µCΩ + op(1) as T →∞.

For the stationary case, we may apply the same argument to the numerator and de-
nominator of (36). The numerator can be decomposed into 1√

T1
1′postei = 1√

T1
1′postεi −

1√
T1

1′postε̄
′
C(µ̄C)−1µi. By the same argument as before, we obtain 1′postε̄

′
C = 1′postε

′
CW =

1′postε
′
CΩ + op(1) as T1, T →∞. Together with µCW = µCΩ + op(1), we obtain 1√

T1
1′postei =

1√
T1

1′postεi + op(1) as T1, T →∞. As for the denominator, the dominating term that involves

W is (µ̄′C)−1 ε̄
′
C ε̄C
T µ̄−1

C . Now, the (k, `) element of ε̄′C ε̄C/T is[
ε̄′C ε̄C
T

]
k,`

=
[
W ′ε′CεCW

T

]
k,`

=
∑
i,j∈C

wikwj`

∑T
t=1 εitεjt
T

=
∑
i,j∈C

[ωikωj` + ωik(wj` − ωj`) + ωj`(wik − ωik)

+ (wik − ωik)(wj` − ωj`)]
∑T

t=1 εitεjt
T

=
∑
i,j∈C

[ωikωj` + op(1)]
∑T

t=1 εitεjt
T

,

which implies that W ′ε′CεCW
T = Ω′ε′CεCΩ

T + op(1) as T →∞. In summary, the terms involving
the estimation error of W are strictly dominated as T1, T →∞.

6.4 Proof of Corollary 1 and 2

6.4.1 Nonstationary case

Again we focus on the decomposition (24), and then divide both the denominator (25) and
the numerator (27) by T1. The denominator converges in distribution to the same probability
limit as before. By the strong law of large numbers, Assumption 1(i), and lemmas 2-4 in
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the Supplementary Results, both
1′postei
T1

and
1′postF

′Υ−1

T1
are op(1), and hence the numerator

converges to zero almost surely as T1 →∞.

6.4.2 Stationary case

The consistency follows readily from the proof of Theorem 2 (that bi → 0 or bi = 0) and that
1
T1

1′postei
a.s.→ 0 by an application of the strong law of large numbers as T1 →∞.

6.5 Supplementary Results

Let ut be a covariance stationary process with mean 0 and variance σ2
u. Let ft be an I(r) process

(without drift), defined iteratively by the following: for r = 0,

ft = ut;

for r = 1,

ft = ft−1 + ut =
t∑

s=1

us;

for r > 1,

ft = ft−1 + πt =
t∑

s=1

πs,

where πt is an I(r − 1) process (without drift).

Lemma 2 Let ft be an I(r) process (without drift). Then the following holds as T →∞:
(i) fT = Op(T r−0.5) for r > 0;
(ii)

∑T
t=1 ft = Op(T r+0.5) for r ≥ 0;

(iii)
∑T

t=1 f
2
t =

{
Op(T 2r) for r > 0,
Op(T 0.5) for r = 0.

Lemma 3 Suppose εt is a stationary process (i.e., I(0)) with mean zero and variance σ2
ε . Assume

that ft and εt are independent. Then the following holds as T →∞:
(i) if r > 0, then

T∑
t=1

ftεt = Op(T r);

(ii) if r = 0 and that (ft, εt) is a strictly stationary bivariate process, then

T∑
t=1

ftεt = Op(T 0.5).

Let T = T0 + T1, where T0, T1 are integers strictly between 0 and T . Let T post = {T0 + 1, T0 +
2, . . . , T}.

Lemma 4 Let ft be an I(r) process (without drift), where r > 0. Let T1, T → ∞, and T1/T → κ.
Then,

(i) for κ = 0,
1

T r−0.5
0 T1

∑
t∈T post

ft = Op(1);
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(ii) for κ ∈ (0, 1],
1

T r+0.5
1

∑
t∈T post

ft = Op(1).

The result holds regardless of whether T0 is finite or infinite.

Corollary 3 Let ft be an I(0) process. Let T1 →∞. Then,

1√
T1

∑
t∈T post

ft = Op(1).

Proof of Lemma 2 For part (i), let us prove the following statements: for r > 0,

ft = Op(tr−0.5),

V ar(ft) = O(t2r−1),

Cov(fs, ft) = O(s2r−1) for s < t.

We proceed by mathematical induction.
For r = 1,

ft =
t∑

s=1

us.

So

V ar(ft) = V ar

(
t∑

s=1

us

)

=
t∑

s=1

V ar(us)

= tσ2
u

= O(t).

It follows that
ft = Op(t0.5)

Also, for s < t,

Cov(fs, ft) = Cov

fs, fs +
t∑

j=s+1

uj


= V ar(fs) + Cov

fs,

t∑
j=s+1

uj


= V ar(fs) = O(s).

Assume the results hold when ft is I(r). Now if ft is I(r + 1),

ft =
t∑

s=1

πs
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where πt is an I(r) process. By assumption, πt = Op(t2r−1), V ar(πt) = O(t2r−1) and Cov(πs, πt) =
O(s2r−1) for s < t. Now

V ar(ft) = V ar

(
t∑

i=1

πi

)

=
t∑

i=1

V ar(πi) + 2
t−1∑
i=1

t∑
j=i+1

Cov(πi, πj)

= O

 t∑
s=1

i2r−1 + 2
t−1∑
i=1

t∑
j=i+1

i2r−1


= O

(
t2r+1 + 2

t−1∑
i=1

(t− i) i2r−1

)
= O

(
t2r+1

)
.

Also, for s < t,

Cov(fs, ft) = V ar(fs) + Cov

 s∑
i=1

πi,

t∑
j=s+1

πj

 .

But

Cov

 s∑
i=1

πi,

t∑
j=s+1

πj

 =
s∑

i=1

t∑
j=s+1

Cov(πi, πj)

= O

 s∑
i=1

t∑
j=s+1

i2r−1


= O

(
s∑

i=1

(t− i)i2r−1

)
= O

(
s2r+1

)
.

As a result,
Cov(fs, ft) = O

(
s2r+1

)
.

So the results hold for all non-negative integers r.
Part (ii) follows readily from part (i) for the case r > 0. For r = 0, the result is obtained from the

Central Limit Theorem.
Let us turn to part (iii). For r = 0, the result is immediate from part (ii), by noting that f2

t is a
stationary process. For r > 0, we obtain from part (i) that,

ft = Op(tr−0.5),

which implies that
f2

t = Op(t2r−1).

Therefore, we have
T∑

t=1

f2
t = Op

(
T∑

t=1

t2r−1

)
= Op(T 2r).
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Proof of Lemma 3 The result for r = 0 is obvious by noting that fsεs is stationary. For r > 0,
let us compute

V ar

(
t∑

s=1

fsεs

)
=

t∑
s=1

V ar(fsεs) + 2
t−1∑
i=1

t∑
j=1

Cov(fiεi, fjεj).

Since E(ft) = E(εt) = 0 and that ft and εt are independent, it follows that

V ar(fsεs) = V ar(fs)V ar(εs) = σ2
eO(s2r−1),

by the first lemma. Also, for i < j,

Cov(fiεi, fjεj) = E(fiεifjεj) = E(fifj)E(εi)E(εj) = 0.

So, we obtain

V ar

(
t∑

s=1

fsεs

)
= O

(
t∑

s=1

s2r−1

)
= O(t2r),

which implies that
∑t

s=1 fsεs = Op(tr).

Proof of Lemma 4 Let T = T0 + T1. If ft is I(1), we have

T∑
t=T0+1

ft =
T∑

t=T0+1

[fT0 + (ft − fT0)]

= T1fT0 +
T∑

t=T0+1

(ft − fT0)

= T1fT0 +
T∑

t=T0+1

t∑
i=T0+1

ui

= T1fT0 +
T1∑
t=1

t∑
i=1

uT0+i.

If ft is I(2), we have

T∑
t=T0+1

ft = T1fT0 +
T∑

t=T0+1

(ft − fT0)

= T1fT0 +
T∑

t=T0+1

(t− T0)πT0 +
t∑

i=T0+1

i∑
j=T0+1

uj


= T1fT0 +

T1(T1 + 1)
2

πT0 +
T1∑
t=1

t∑
i=1

i∑
j=1

uT0+j .

Repeating the above computations, we obtain the following lemma:

Lemma 5 Let π(j)
T0

be an I(j) process where j > 0. Let ft be the I(r) process defined as before.
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Suppose r > 0. Then we have∑
t∈T post

ft = T1fT0 +
T1(T1 + 1)

2!
π

(r−1)
T0

+
T1(T1 + 1)(2T1 + 1)

3!
π

(r−2)
T0

+ · · ·

+ P (r)(T1)π(1)
T0

+
T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir
,

where P (r)(T1) is a polynomial in T1 with maximum order r.

Now let us continue with the proof. Assume that r > 0. Then we see that

fT0 = Op(T r−0.5
0 ),

π
(j)
T0

= Op(T j−0.5
0 ),

as T0 →∞, or they are bothOp(1) if T0 is finite. Since uT0+j is I(0), the process ξj :=
∑j

t=1

∑t
i1=1 · · ·

∑ir=1
ir=1 uT0+ir

is I(r + 1), and so ξj = Op(T r+0.5
1 ). Therefore,∑

t∈T post

ft = Op(T1T
r−0.5
0 ) +Op(T 2

1 T
r−1.5
0 ) +Op(T 3

1 T
r−2.5
0 ) + · · ·

+Op(T r
1 T

0.5
0 ) +Op(T r+0.5

1 ).

For κ = 0, we see that the correct normalizing factor is 1
T r−0.5

0 T1
. Applying lemma 5, we have

1
T r−0.5

0 T1

∑
t∈T post

ft =
1

T r−0.5
0

fT0 +
T1 + 1

2
1

T r−0.5
0

π
(r−1)
T0

+
(T1 + 1)(2T1 + 1)

6
1

T r−0.5
0

π
(r−2)
T0

+ · · ·+ P (r−1)(T1)
1

T r−0.5
0

π
(1)
T0

+
1

T r−0.5
0 T1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir

=
1

T r−0.5
0

fT0 +
T1 + 1

2T0

1
T r−1.5

0

π
(r−1)
T0

+
(T1 + 1)(2T1 + 1)

6T 2
0

1
T r−2.5

0

π
(r−2)
T0

+ · · ·+ P (r−1)(T1)
T r−1

0

1√
T0

π
(1)
T0

+
(
T1

T0

)r−0.5 1
T r+0.5

1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir
.

Except for the first term, all the terms on the right hand side vanish in the limit. As a result,

1
T r−0.5

0 T1

∑
t∈T post

ft =
1

T r−0.5
0

fT0 + op(1)

= Op(1).
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For κ ∈ (0, 1], we see that the correct normalizing factor is 1
T r+0.5

1
. Applying lemma 5, we have

1
T r+0.5

1

∑
t∈T post

ft

=
T1

T r+0.5
1

fT0 +
T1(T1 + 1)

2!
1

T r+0.5
1

π
(r−1)
T0

+
T1(T1 + 1)(2T1 + 1)

3!
1

T r+0.5
1

π
(r−2)
T0

+ · · ·+ P (r)(T1)
1

T r+0.5
1

π
(1)
T0

+
1

T r+0.5
1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir

=
(
T0

T1

)r−0.5 1
T r−0.5

0

fT0 +
1
2!

(
T0

T1

)r−1.5 1
T r−1.5

0

π
(r−1)
T0

+
1
3!

(
T0

T1

)r−2.5 1
T r−2.5

0

π
(r−2)
T0

+ · · ·+ 1
r!

√
T0

T1

1√
T0

π
(1)
T0

+
1

T r+0.5
1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir + op(1)

=
(

1− κ
κ

)r−0.5 1
T r−0.5

0

fT0 +
1
2!

(
1− κ
κ

)r−1.5 1
T r−1.5

0

π
(r−1)
T0

+
1
3!

(
1− κ
κ

)r−2.5 1
T r−2.5

0

π
(r−2)
T0

+ · · ·+ 1
r!

√
1− κ
κ

1√
T0

π
(1)
T0

+
1

T r+0.5
1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir
+ op(1).

Note that all the r + 1 terms explicitly displayed on the right are Op(1). In particular, when κ =∞,
the first r terms on the right vanish in the limit. As a result,

1
T r+0.5

1

∑
t∈T post

ft =
1

T r+0.5
1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir
+ op(1)

= Op(1).

In summary, as T1, T → ∞, and T1/T → κ, we obtain the following results depending on the
value of κ:

(i) for κ = 0,

1
T r−0.5

0 T1

∑
t∈T post

ft =
1

T r−0.5
0

fT0 + op(1)

= Op(1);

(ii) for κ ∈ (0, 1),

1
T r+0.5

1

∑
t∈T post

ft =
(

1− κ
κ

)r−0.5 1
T r−0.5

0

fT0 +
1
2!

(
1− κ
κ

)r−1.5 1
T r−1.5

0

π
(r−1)
T0

+
1
3!

(
1− κ
κ

)r−2.5 1
T r−2.5

0

π
(r−2)
T0

+ · · ·+ 1
r!

√
1− κ
κ

1√
T0

π
(1)
T0

+
1

T r+0.5
1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir
+ op(1)

= Op(1);
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(iii) for κ = 1,

1
T r+0.5

1

∑
t∈T post

ft =
1

T r+0.5
1

T1∑
t=1

t∑
i1=1

· · ·
ir−1∑
ir=1

uT0+ir + op(1)

= Op(1).

The last result (the κ = 1 case) holds regardless of whether T0 is finite or infinite. If T0 is finite,
then all of the above expressions remain valid by setting T0 = 1.

Proof of Corollary 3 The analysis is straightforward for r = 0, as the Central Limit Theorem
implies that

1√
T1

∑
t∈T post

ft = Op(1)

as long as T1 →∞ (regardless of the value of κ).
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(NC, NI) (T0, T1)

CCEPC-
DID 

(3PCs)
CCE-
DID

Hsiao et 
al. 

(2012)
Bai 

(2009) DID

CCEPC-
DID 

(3PCs)
CCE-
DID

Hsiao et 
al. 

(2012)
Bai 

(2009) DID
Stationary: One AR(1) factor (ρ=0.5):
10,40 25,25 0.02 0.02 0.02 -0.03 0.02 0.05 0.03 0.06 0.21 0.09
40,10 25,25 0.16 0.16 0.10 0.16 0.03 0.02 0.13 0.07
49,1 25,25 0.00 0.00 -0.05 0.00 0.09 0.06 0.13 0.10
25,25 10,40 0.02 0.02 -0.04 0.02 0.04 0.02 0.12 0.12
25,25 40,10 0.02 0.02 0.02 -0.04 0.02 0.04 0.04 0.06 0.26 0.10
Stationary: Three AR(1) factors (ρ1=0.5, ρ2=0.7, ρ3=0.9):
10,40 25,25 -0.14 -0.13 -0.14 -0.19 -0.14 0.16 0.13 0.18 1.12 0.52
40,10 25,25 0.02 0.02 -0.04 0.01 0.09 0.08 0.74 0.48
49,1 25,25 -0.06 -0.05 -0.11 -0.06 0.12 0.08 0.60 0.35
25,25 10,40 -0.14 -0.13 -0.17 -0.12 0.12 0.07 0.58 0.59
25,25 40,10 -0.14 -0.13 -0.14 -0.19 -0.14 0.10 0.10 0.12 1.15 0.48
Nonstationary: Three I(1) factors:
10,40 25,25 -0.14 -0.14 -0.14 -0.25 -0.16 0.21 0.44 0.25 3.19 0.98
40,10 25,25 0.02 0.00 -0.13 -0.01 0.17 0.54 2.77 1.06
49,1 25,25 -0.05 -0.07 -0.18 -0.07 0.17 0.40 2.35 0.82
25,25 10,40 -0.14 -0.15 -0.27 -0.18 0.17 0.42 2.07 1.05
25,25 40,10 -0.13 -0.13 -0.13 -0.37 -0.19 0.17 0.46 0.19 3.46 1.04
Nonstationary: Three factors (I(1), I(2) and I(3)):
10,40 25,25 -0.16 -0.37 -0.13 10.90 4.92 0.29 5.62 2.20 1360 605
40,10 25,25 0.01 -0.11 7.99 4.64 0.18 2.85 1090 545
49,1 25,25 -0.06 -0.11 6.33 3.18 0.23 1.26 864 378
25,25 10,40 -0.14 -0.12 2.95 2.06 0.22 3.53 662 432
25,25 40,10 -0.13 -0.06 -0.11 22.02 9.17 0.23 5.06 0.44 1798 702
a Number of replications=1000.

TABLE III

SMALL SAMPLE PROPERTIES OF ESTIMATORS UNDER DIFFERENT SAMPLE BALANCESa

Mean Bias Empirical SD



Estimator
CCEPC-DID
  Number of PCs
    1 0.010 (0.012) 0.025 (0.005) ***
    2 0.011 (0.010) 0.026 (0.005) ***
    3 0.011 (0.009) 0.028 (0.005) ***
    5 0.021 (0.010) ** 0.022 (0.006) ***
    10 0.040 (0.008) ***
CCE-DID 0.010 (0.012) 0.023 (0.005) ***
HCW (2012) -0.036 (0.089) 0.024 (0.024)
Bai (2009) -0.029 (0.009) *** 0.035 (0.004) ***
DID 0.001 (0.008) 0.032 (0.003) ***

FIGURE 1. -- Actual Hong Kong GDP growth versus predictions from HCW 
and CCEPC-DID methods.

TABLE IV

COMPARISON OF TREATMENT EFFECT ESTIMATES, GDP GROWTH DATA a

Political Integration Data
(93:Q1 - 03:Q4)

Economic Integration Data
(93:Q1 - 08:Q1)

a Standard errors are in parentheses. The HCW estimate uses all countries from the control group donor pool and 
SD is in parentheses. *, Significant at the 10 percent level; **, Significant at the 5 percent level; ***, Significant 
at the 1 percent level.

(a) Political integration data. (b) Economic integration data.
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PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
Australia - - 0.035 0.217 Malaysia 0.151 -0.593 0.106 -0.194
Austria - - 0.017 0.104 Mexico - - 0.043 0.146
Canada - - 0.037 0.107 Netherlands - - 0.027 0.115
China 0.151 2.787 0.103 0.337 New Zealand - - 0.039 0.076
Denmark - - 0.023 0.052 Philippines 0.083 0.173 0.055 0.044
Finland - - 0.032 0.217 Singapore 0.127 1.161 0.086 0.037
France - - 0.016 0.117 Switzerland - - 0.013 0.086
Germany - - 0.007 0.039 Taiwan 0.087 1.707 0.057 0.198
Indonesia 0.151 -4.353 0.095 -0.448 Thailand 0.086 -0.616 0.062 -0.338
Italy - - 0.014 0.057 United Kingdom - - 0.034 0.174
Japan 0.009 -0.596 0.008 -0.087 United States 0.036 1.025 0.024 0.164
Korea 0.121 0.306 0.067 -0.218
a For each principal component, all weights sum to one. PC1: first principal component; PC2: second principal component.

TABLE V
COUNTRY WEIGHTS FROM THE CCEPC-DID ESTIMATOR, GDP GROWTH DATA

 (FIRST TWO PRINCIPAL COMPONENTS)a

Political 
Integration Data

Economic 
Integration Data

Political 
Integration Data

Economic 
Integration Data



1st PC
2nd PC
3rd PC
4th PC
5th PC

1.0811 0.5911
0.2375 0.2747

a Only the first five principal components are reported. Numbers are expressed in percent.

85.6980 94.0300
8.7698 2.8720
3.9839 2.0090

(a) Political integration data. (b) Economic integration data.

FIGURE 2. -- Principal components from the CCEPC-DID estimator, GDP growth data.

TABLE VI

PROPORTION OF VARIANCE EXPLAINED BY PRINCIPAL 
COMPONENTS, GDP GROWTH DATAa

Political Integration 
Data

Economic 
Integration Data
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Estimator
CCEPC-DID
  Number of PCs used
    1 -19.97 (4.79) *** -19.13 (3.41) *** -1.69 (0.25) *** -0.63 (0.13) ***
    2 -15.29 (4.19) *** -5.47 (3.80) -1.90 (0.25) *** -0.89 (0.20) ***
    3 -5.85 (6.66) -1.78 (4.91) -1.77 (0.25) *** -0.63 (0.23) ***
    5 -1.23 (2.95) -2.13 (2.40) -1.71 (0.32) *** -0.60 (0.22) ***
    10 -5.39 (2.31) ** -4.69 (2.11) ** -0.74 (0.48) -0.43 (0.29)
CCE-DID -20.62 (4.79) *** -1.19 (0.25) ***
Synthetic control -19.48 (6.91) *** -19.48 (6.91) *** -1.94 (1.97) -1.94 (1.97)
Bai (2009) -57.23 (3.97) *** -39.73 (3.97) *** -3.01 (0.14) *** -2.16 (0.14) ***
DID -27.35 (2.61) *** -27.35 (2.61) *** -0.75 (0.26) *** -0.75 (0.26) ***
a Standard errors are in parentheses. The synthetic control estimate is based on Abadie et al. (2010) and SD is in parentheses. Detrended data are 
constructed by subtracting the variable by its cross-sectional mean each period. *, Significant at the 10 percent level; **, Significant at the 5 percent 
level; ***, Significant at the 1 percent level.

FIGURE 3. -- Actual level of cigarette sales versus predictions from synthetic control 
and CCEPC-DID methods.

(a) Synthetic control and CCEPC-DID (1PC). (b) CCEPC-DID (5 PCs).

FIGURE 4. -- Actual yearly change of cigarette sales versus predictions from 
synthetic control and CCEPC-DID methods.

TABLE VII

COMPARISON OF TREATMENT EFFECT ESTIMATES, CIGARETTE SALES DATA a

Level Data (1970-2000) Yearly Change Data (1971-2000)
Not detrended Detrended Not detrended Detrended
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PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2
Alabama 0.024 0.464 0.016 0.000 Montana 0.023 -0.125 0.029 -0.027
Alaska - - - - Nebraska 0.022 0.053 0.010 -0.020
Arizona - - - - Nevada 0.034 -0.776 0.047 -0.505
Arkansas 0.025 0.522 0.003 0.261 New Hampshire 0.048 -0.984 0.113 -0.917
Colorado 0.024 -0.298 0.029 0.046 New Jersey - - - -
Connecticut 0.022 -0.110 -0.004 -0.107 New Mexico 0.019 -0.173 0.020 0.053
Delaware 0.031 0.224 0.005 -0.389 New York - - - -
D.C. - - - - North Carolina 0.037 -0.651 0.089 0.243
Florida - - - - North Dakota 0.022 -0.099 0.031 0.191
Georgia 0.026 0.250 0.009 -0.155 Ohio 0.026 0.291 0.006 -0.036
Hawaii - - - - Oklahoma 0.026 0.101 0.033 -0.067
Idaho 0.022 -0.202 0.040 -0.453 Oregon - - - -
Illinois 0.025 -0.234 0.011 0.167 Pennsylvania 0.024 0.183 0.012 0.019
Indiana 0.031 0.286 0.044 0.259 Rhode Island 0.027 -0.206 0.029 0.917
Iowa 0.023 0.101 0.009 0.120 South Carolina 0.027 0.380 0.033 -0.104
Kansas 0.024 -0.009 0.023 0.242 South Dakota 0.022 0.156 0.023 0.101
Kentucky 0.041 0.385 0.073 0.311 Tennessee 0.026 0.633 0.015 -0.069
Louisiana 0.027 0.122 0.017 0.194 Texas 0.023 -0.186 0.012 -0.107
Maine 0.027 -0.036 0.019 0.011 Utah 0.014 -0.080 0.014 -0.172
Maryland - - - - Vermont 0.030 -0.031 0.045 0.268
Massachusetts - - - - Virginia 0.029 -0.019 0.038 -0.009
Michigan - - - - Washington - - - -
Minnesota 0.022 0.005 -0.009 -0.432 West Virginia 0.025 0.323 0.030 0.073
Mississippi 0.024 0.355 0.025 0.039 Wisconsin 0.023 0.134 0.011 0.160
Missouri 0.028 0.370 0.015 0.075 Wyoming 0.029 -0.119 0.040 0.814
a For each principal component, all state weights sum to 1. PC1: first principal component; PC2: second principal component.

TABLE VIII

STATE WEIGHTS FROM THE CCEPC-DID ESTIMATOR (FIRST TWO PRINCIPAL COMPONENTS) a

Level Data Yearly Change Data Level Data Yearly Change Data



Level Data
99.9555

0.0422
0.0012
0.0006
0.0004

4th PC 4.9572

5th PC 4.1041
a Only the first five principal components are reported. Numbers are expressed in percent.

1st PC 56.7611

2nd PC 12.7650

3rd PC 9.4671

(a) Level data. (b) Yearly change data.

FIGURE 5. -- Principal components from the CCEPC-DID estimator, cigarette sales data.

TABLE IX

PROPORTION OF VARIANCE EXPLAINED BY PRINCIPAL 
COMPONENTS, CIGARETTE SALES DATA

Yearly Change Data
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