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Abstract

This paper considers populations of agents whose behavior when playing some underlying
game is governed by perturbed best (or better) response dynamics with perturbation prob-
abilities that depend log-linearly on payoffs, a class that includes the logit choice rule. A
convention is a state at which every agent plays a strategy that corresponds to the same
strict Nash equilibrium of the underlying game. For coordination games with zero payoffs
off-diagonal, it is shown that the difficulty of leaving the basin of attraction of a convention
can be well approximated by only considering paths of transitions on which an identical
perturbation repeatedly affects one of the populations.
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1. Introduction

Consider two populations corresponding to positions in a two player normal form game.

The behavior of agents within the populations is governed by a perturbed individualistic best

response dynamic (Young, 1993; Kandori et al., 1993). Such dynamics involve individuals

who will usually play a best response to the distribution of play of the opposing population,

but whose behavior is perturbed in that they occasionally play something other than a best

response. One popular class of perturbations involves non-best response strategies being

chosen with probabilities that decrease log-linearly in the payoff lost by choosing them rather

than a best response (Blume, 1993; Sandholm, 2010). The logit choice rule falls into this class.

For potential games (Monderer and Shapley, 1996), when agents update their strategies one

at a time and perturbations are small, such dynamics spend most of their time close to
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strategy profiles which globally maximize the potential function.1 However, the dependency

of perturbations on payoffs that makes such dynamics amenable to the analysis of potential

games, creates obstacles to the analysis of games which are not potential games.2

In this paper, we analyze coordination games with zero payoffs off-diagonal, which may

not be potential games. A convention is a state at which every agent plays a strategy corre-

sponding to the same strict Nash equilibrium of the game. In the absence of perturbations,

conventions would be rest points of the dynamic process. An important quantity for the

study of adaptive dynamics under small perturbations is the cost of transiting from a con-

vention to outside of its basin of attraction. The cost corresponds to the exponential rate of

decay of the probability of a transition as perturbations become rare. When perturbations

are rare, so that players almost always choose a best response, high cost transitions occur

much less often than low cost transitions. For the class of games considered in this paper,

we show that such costs can be well approximated even if we restrict attention to paths on

which the only non-best response behavior involves members of a single population playing

the same action. Our proof technique is elementary and relies on the construction of an

explicit lower bound function for the cost of escaping a basin of attraction. We use our

result to characterize stochastically stable states in coordination games for which the best

coordination outcome for a player corresponds to the worst outcome for his opponent.

The results of the current paper hold for coordination games with an arbitrary number

of strategies. Potential games are non-generic within this class. Furthermore, most such

games do not have a ‘local potential maximizer’ (Morris and Ui, 2005) and so the results

of Okada and Tercieux (2012) are of limited applicability. Complementary results by other

authors hold for either two strategy, two population models (Staudigl, 2012) or for three

strategy, one population models (Sandholm and Staudigl, 2015). The cited works show that

as population size approaches infinity, transition costs can be found by solving a continuous

optimal control problem. In contrast, the current paper uses an explicit construction. This

has three benefits. Firstly, our result is as easily proven for n strategies as it is for 3 strategies.

Secondly, our method allows us to obtain bounds for fixed, finite population size, which is

useful for empirical work. Thirdly, our proof is short, elementary and easily understood

1This does not hold when more than a single agent can update their strategy at the same time (Alós-
Ferrer and Netzer, 2010). Furthermore, if the dynamic allows for agency at a level greater than the individual
(Newton, 2012), then potential maximizing strategy profiles are not necessarily even rest points of the
unperturbed dynamic (Newton and Angus, 2015, 2013).

2Similarly, the analysis of potential games is much easier with payoff dependent perturbations than
with payoff independent perturbations. To see this, compare the difficulty of proving stochastic stability
of risk-dominant actions in symmetric two by two coordination games on networks for payoff dependent
perturbations (Young, 1998b) and for payoff independent perturbations (Peski, 2010).
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without specialist knowledge.

Finally, we note that the result of the current paper applies to a broad class of exponential

revision rules (Sandholm, 2010) and not just logit. In particular, the Theorem applies to

behavioral rules in which agents do not play best responses, but rather better responses,

whereby an agent compares his current action to a single alternative strategy at a time

rather than seeking the optimal strategy from the entire set of strategies (Friedman and

Mezzetti, 2001; Josephson, 2008; Dindoš and Mezzetti, 2006).

Possible applications of our results arise whenever there are multiple ways in which two

parties can coordinate to generate surplus. One such example is the literature on intra-

household bargaining (e.g. Manser and Brown, 1980; McElroy and Horney, 1981; Lundberg

and Pollak, 1993) in which it is assumed that the distribution of gains from marriage corre-

sponds to some solution from cooperative game theory (e.g. Nash, 1950; Kalai and Smorodin-

sky, 1975; Kalai, 1977). Similarly, in the literature on search and matching, the division of

surplus amongst matched players is often assumed to satisfy some cooperative solution.3 See

Rogerson et al. (2005) and Lagos et al. (2015) for surveys of this work as it relates to the

labour market and monetary economics respectively. Our work raises the prospect of endo-

genizing surplus allocation in these models, so that sharing norms emerge from behavioral

rules applied to the context under consideration. Steps in this direction have already been

taken in Hwang and Newton (2014) and Hwang et al. (2016) who consider bargaining sets

characterized by decreasing, concave efficient frontiers. Using the Theorem of the current

paper, these works link behavioral rules to bargaining solutions, using experimental data

to identify the Egalitarian solution (Kalai, 1977) as the most plausible long run behavioral

norm in this context.

The paper is organized as follows. Section 2 gives the model. Section 3 presents and

discusses the approximation theorem which is the main result of the paper. Section 4 uses

the Theorem to prove a result on stochastic stability in coordination games. Section 5

contains proofs.

2. Model

Consider two populations of agents − α and β populations − of size N . Two agents,

one from each population, are matched to play a coordination game. The common strategy

set is S := {0, 1, 2, · · · , n}. A strategy profile or state is described by x := (xα, xβ), where

xα and xβ are vectors giving the number of agents in each population who are using each

3We have in mind what is known as the Diamond-Mortensen-Pissarides framework of search and matching.
See, for example Diamond (1982); Mortensen and Pissarides (1994, 1999).
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strategy. Thus, the state space Ξ is

Ξ :=

{
(xα, xβ) :

∑
l∈S

xα(l) = N, xα(l) ∈ N0,
∑
l∈S

xβ(l) = N , xβ(l) ∈ N0

}

More explicitly, we have (xα, xβ) = ((xα(0), xα(1), · · · , xα(n)), (xβ(0), xβ(1), · · · , xβ(n))),

where xβ(2), for example, denotes the number of β-agents playing strategy 2.

We consider coordination games with payoffs given by

(πα(i, j), πβ(j, i)) =

{
(πα(i), πβ(i)), πα(i), πβ(i) ≥ 0 if i = j

(0, 0) otherwise
.

We assume that agents from each population are randomly matched to play the game and

thus, the expected payoff of an α agent who plays strategy i is πα(i, x) :=
∑

l∈S πα(i, l)xβ(l)/N ,

given that the fraction of the β population using strategy l is xβ(l)/N. Similarly, the expected

payoff of a β-agent who plays strategy i is πβ(i, x) :=
∑

l∈S πβ(i, l)xα(l)/N.

We consider a discrete time strategy updating process defined as follows. At each period,

an agent from either the α population or the β population is uniformly chosen at random.

The chosen agent selects a strategy based on his evaluation of the expected payoffs of the

different strategies. The agent may idiosyncratically experiment with non-optimal strategies,

or simply make mistakes. The probability of such mistakes will be parameterized by a

parameter η, and larger values of η will correspond to higher mistake probabilities.

Specifically, we consider the following revision rules from the class of exponential revision

protocols (Sandholm, 2010). From state x, when an agent from population γ ∈ {α, β} who

is currently playing strategy i is chosen to update his strategy, he switches to strategy j 6= i

with probability

pηγ(j|i, x) ∝ exp(η−1πγ(j, x))∑
l∈Ci,j exp(η−1πγ(l, x))

, (1)

where Ci,j ⊆ S and i, j ∈ Ci,j. This set, Ci,j can be understood as the set of alternatives

with which the current strategy i and prospective strategy j are compared. Examples of

rules satisfying (1) are the logit choice rule, for which Ci,j = S, and the exponential better

reply rule, for which Ci,j = {i, j}.
Note that as η approaches zero, the probability of choosing a strategy from some com-

parison group Ci,j that is inferior to some other strategy in Ci,j approaches zero. Taking the

limit of the pηγ(j|i, .) as η → 0 gives the unperturbed process. Unlike the process with η > 0,

the unperturbed process need not be irreducible and may have multiple recurrent classes. In
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fact, the recurrent classes of the unperturbed process are the absorbing states in which all α

and β-agents coordinate on the same strategy, and each agent type receives nonzero payoff

(Young, 1998a). We shall denote by Ei, i ∈ {0, . . . , n}, the state in which all agents play

strategy i, xα(i) = N , xβ(i) = N . The absorbing states of the process are precisely those

in the set Λ := {Ei : πα(i), πβ(i) > 0}. Following Young (1993), we refer to these states as

conventions. Assume that there are at least two conventions, |Λ| ≥ 2.

We shall write as xγ,i,j the state induced from x by a γ population (γ = α or β) agent’s

strategy change from i to j. An important quantity in the study of perturbed adaptive

processes is the resistance of transitions between states x and y, which measures the rarity

of transitions from x to y. Specific to the current context, the resistance V (x, xγ,i,j) :=

limη→0−η log pηγ(j|i, x) measures the rarity of switches by agents from strategy i to strategy

j at state x. Under revision rules satisfying (1), we have

V (x, xγ,i,j) = max{πγ(l, x) : l ∈ Ci,j} − πγ(j, x). (2)

Note that V (., .) is nonnegative but may be equal to zero for some transitions. Transitions

for which V (., .) > 0 become rare as η → 0. For a convention x = Ei ∈ Λ, V (x, xγ,i,j) > 0 for

all γ ∈ {α, β}, j 6= i. That is, perturbations are required to move away from a convention.

In a similar way that V (·, ·) measures the rarity of single steps in the dynamic, we will use

a concept, overall cost, that measures the rarity of a transition between any two states over

any number of periods. Let P(x, x′) be the set of finite sequences of states (x1, x2, . . . , xT )

such that x1 = x, xT = x′ and for τ = 1, . . . , T − 1, xτ+1 = (xτ )
γ,k,l > 0 for some γ, k, l.

The overall cost of a transition between x, x′ ∈ Ξ is:

c(x, x′) := min
{x1,...,xT }∈P(x,x′)

T−1∑
τ=1

V (xτ , xτ+1).

Define the basin of attraction D(Ei) of a convention Ei as the set of states from which

the unperturbed process converges to Ei and not to any other convention.

D(Ei) := {x ∈ Ξ : c(x,Ei) = 0, c(x,Ej) > 0 for all j 6= i}

From a given convention, Ei, we seek to determine the lowest cost transition path to some

state outside of the convention’s basin of attraction, D(Ei). This is known as the first exit

problem and is absolutely crucial to the study of invariant distributions and the stochastic

stability concept of Young (1993); Kandori et al. (1993).
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3. Approximating the costs of escaping a basin of attraction

The need for the approximation result of the current paper arises from the fact that,

in contrast to the case of state independent error probabilities (Young, 1998a), the most

probable escape path from the basin of attraction of a rest point of the unperturbed dynamic

can involve errors being made by both populations.4 Errors in one population can facilitate

errors in the other population by reducing the payoff loss when they are made. The possibility

of such escape paths being the most probable ones is caused by population effects and, in

contrast to examples given in Alós-Ferrer and Netzer (2010), occurs even for potential games

of coordination under asynchronous strategy updating. Previous work does not explicitly

study the implications of such transitions (e.g. Belloc and Bowles, 2013), deals with the limit

as population sizes grow to infinity (Staudigl, 2012), or restricts analysis to potential games

(Blume, 1993, 1997). As precise invariant distributions can be calculated for potential games

played under asynchronous dynamics, the latter strand of research has not required study

of the first exit problem. Whether or not the first exit problem for such games is worth

studying despite this, it remains the case that potential games are non-generic in the class

of games considered in the current paper.5,6

From a convention Ei ∈ Λ, define θ̄ij as the maximum number of α-agents who can switch

to strategy j such that β-agents still receive a higher expected payoff from i than from j,

that is the state remains in the basin of attraction of Ei. Similarly define ζ̄ij as the maximum

number of β-agents who can switch to strategy j such that the state remains in the basin of

attraction of Ei.

θ̄ij =

⌈
N

πβ(i)

πβ(i) + πβ(j)

⌉
− 1, ζ̄ij =

⌈
N

πα(i)

πα(i) + πα(j)

⌉
− 1,

where d.e is a ceiling function, denoting the smallest integer greater than or equal to its

argument. These quantities are well defined, as for Ei ∈ Λ, πα(i) and πβ(i) are strictly

positive. Note that, by definition, starting from Ei, exactly θ̄ij + 1 (respectively ζ̄ij + 1)

instances of α (respectively β) agents erroneously choosing j will suffice for the process to

4For state independent errors, any least cost transition from a given convention to outside its basin of
attraction is driven by errors within a single population: errors occur in one of the populations, following
which, agents from the other population can best/better respond in a way which differs from the initial
convention. Errors in the population which best responds differently would be superfluous.

5If payoffs on the diagonal are independently drawn from continuous distributions, then the resulting
game will almost surely not be a potential game.

6Likewise, by considering the conditions given in Example 1 of Okada and Tercieux (2012), it becomes
clear that there does not always exist a ‘local potential maximizer’ (Morris and Ui, 2005) in the games we
consider. Moreover, even when there does exist a local potential maximizer, the games are not necessarily
supermodular, so the results of Okada and Tercieux have limited applicability in this context.
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exit the basin of attraction of Ei. However, as remarked, this does not provide a lower bound

on exit cost, which we now illustrate with an example.

Example 1. Consider the logit dynamics and the following (potential) game:

α-agent

β-agent
0 1

0 5, 4 0, 0
1 0, 0 7, 8

We suppose that N = 5. Starting from E0, we compute the minimum cost of escaping D(E0)

via transitions by only one population. As θ̄01 = 1, ζ̄01 = 2, we have

(θ̄01 + 1)πα(0) = 10, (ζ̄01 + 1)πβ(0) = 12.

Next, consider the path of transitions whereby ζ̄01 of the β-agents switch from strategy 0 to

strategy 1, following which θ̄01 + 1 of the α-agents switch from strategy 0 to strategy 1. This

gives a path from E0 to D(E1) and the cost of the path is given by

ζ̄01πβ(0) + (θ̄01 + 1)×
[

1

N

(
N − ζ̄01

)
πα(0)− 1

N
ζ̄01πα(1)

]
= 2πβ(0) + 2

(
3

5
πα(0)− 2

5
πα(1)

)
= 8.4

which is smaller than the minimum costs of transitions driven by a single population.

So we see that in Example 1, the least cost transition from E0 to E1 requires errors to

be made by agents in both populations. This is due to the behavior of the process close to

the boundary of the basin of attraction of E0. After β-agents make errors, the cost of errors

by α-agents is reduced. A single error by a β-agent has a lower cost than the consequent

reduction in the cost of two errors by α-agents. Two errors by β-agents reduce the cost

further still. However, after two errors have been made by β-agents, subsequent errors by

β-agents no longer have a linear effect on the cost of an error by an α-agent due to the

zero lower bound on V (·, ·). Following two errors by β-agents, the cost of a third error by a

β-agent is higher than the cost of two errors by α-agents. A moment’s consideration leads

one to see that, for any given population size, examples can be constructed for which least

cost transitions involve errors by both populations. Note that this effect is driven by the

finiteness of the populations, that is, by the ceiling functions d.e in the calculations.7

7This can be contrasted with Example 3 of Alós-Ferrer and Netzer (2010), whose model is not a population
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Fortunately, when the population size is large, we can exploit linearity to show that,

starting from a convention Ei, the cost of the least cost transition path out of the basin

of attraction of Ei can be approximated by the lowest cost transitions which involve errors

being made by agents in only one of the populations, and those agents making only one

type of error. We construct precise bounds for fixed finite population size and do not rely on

limiting arguments. However, these bounds become more accurate, and hence more useful,

as the population size grows.

Theorem 1. Let Ei ∈ Λ be given. Let θi and ζ
i

be the minima of θ̄ij, ζ̄ij over all possible

alternative strategies j.

θi := min
{
θ̄ij : j ∈ S, j 6= i

}
, ζ

i
:= min

{
ζ̄ij : j ∈ S, j 6= i

}
.

Then

min
{
πα(i)θi , πβ(i)ζ

i

}
≤ min

j 6=i
c(Ei, Ej) ≤ min

{
πα(i)(θi + 1) , πβ(i)(ζ

i
+ 1)

}
.

From the definitions of θ̄ij, ζ̄ij, observe that although both bounds in the Theorem increase

(asymptotically proportionally) inN , the ratio of the upper to lower bounds approaches unity

as N → ∞. This implies that when comparing the costs of exiting the basins of attraction

of differing conventions there is vanishing loss of accuracy (as N →∞) in considering paths

which are driven by errors in only a single population. In the limit, the Theorem extends

the result of Staudigl (2012), who uses a different methodology based on optimal control

problems to derive such an implication for 2 by 2 games. In Figure 1 we illustrate Theorem

1 for the game in Example 1. As population size N increases, the lower and upper bounds

in the figure converge.

Note that proving Theorem 1 for games with an arbitrary number of strategies is more

difficult than proving it for the two strategy case. Consider paths of length t from convention

Ei to outside of its basin of attraction. The number of such paths grows polynomially in

the number of alternative strategies (nt). This is because of the possibility that on a path

exiting D(Ei), agents switch from i to j and subsequently to k. In contrast, when there are

only two strategies, switches on a path exiting D(Ei) must be from i to j as there are no

other alternatives.

The idea of the proof of Theorem 1 is as follows. To estimate the minimum bound for

the lowest cost transitions, we study the minimization problem of the cost function over all

model, and where least cost transitions can involve different players due to the game considered not being a
coordination game with zero payoffs off-diagonal.
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Figure 1: For the game of Example 1, varying N , here we illustrate the bounds for c(E0, E1) given by
Theorem 1, normalized by a factor 1/N.

possible paths escaping D(Ei). Estimation of such minima is complicated when the cost

function of a given path loses linearity at the boundary of the basin of attraction, as is

illustrated by Example 1. To overcome this problem, we explicitly estimate the size of the

basin of attraction of Ei (Lemma 1), showing that to exit D(Ei) requires strictly more than

θi transitions away from i by α-agents or ζ
i

transitions away from i by β-agents. We then

restrict attention to the problem of the lowest cost path from Ei to close to the boundary of

D(Ei) in the sense of there having been exactly θi transitions away from i by α-agents or ζ
i

transitions away from i by β-agents. The cost of such a path is a lower bound on the cost of

a path that exits D(Ei), and moreover, linearity is retained, giving us the corner solutions

that characterize the bounds of the Theorem.

4. Stochastic stability

Consider the (unique) invariant probability measures of the process for fixed η.8 As

η → 0, the probability given by these measures to states outside of some set of states

SS ⊆ Λ approaches zero. States in SS are known as stochastically stable states (Young,

1993). The transition costs c(., .) are important quantities for determining SS.

For Ei ∈ Λ, let G(Ei) be the set of all directed graphs on Λ satisfying (i) each Ej ∈ Λ,

j 6= i, has outdegree 1, and (ii) the graph has no cycles. For g ∈ G(Ei), let Ej → Ek ∈ g

8For a proof that these invariant measures are unique see Hwang and Newton (2014).
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denote an edge from Ej to Ek in graph g. The stochastic potential of Ei is defined as

SP (Ei) := min
g∈G(Ei)

∑
Ej→Ek∈g

c(Ej, Ek).

Young (1993); Kandori et al. (1993) show that the stochastically stable states are those that

minimize stochastic potential, SS = arg minEi∈Λ SP (Ei).
9

We shall use our Theorem to prove a stochastic stability result under the assumption

that there is some coincidence between the best payoff for α-agents and the worst possible

payoff for β-agents, and vice versa. This could be the case if agents had to coordinate over

some allocation of surplus, with the possibility that one party gets everything whilst his

counterparty gets nothing.

Assumption 1. For γ ∈ {α, β}, let π∗γ := maxi πγ(i). Then, there exist 0 ≤ j∗α, j
∗
β ≤ n such

that (πα(j∗α), πβ(j∗α)) = (π∗α, 0) and (πα(j∗β), πβ(j∗β)) = (0, π∗β).

Consider the following sequence of transitions. Starting from Ei, θi+1 α-agents switch to

j∗β. As Assumption 1 implies θ̄ij∗β = θi, this makes j∗β a best response for β-agents (and hence

a zero resistance transition). Let all of the β-agents switch to j∗β. Following this, α-agents

have an expected payoff of zero from all possible strategies, so that any j, 0 ≤ j ≤ n, is

a best response. Let all α-agents switch to some arbitrary j. Following this, j is a best

response for β-agents, and we let all β-agents also switch to j, thus attaining Ej. The only

non-best response behavior in this sequence of transitions was the initial θi + 1 switches by

α-agents. Therefore, for any j 6= i, c(Ei, Ej) ≤ πα(i)(θi + 1). A similar argument shows

that c(Ei, Ej) ≤ πβ(i)(ζ
i
+ 1). These inequalities allow us to strengthen the inequalities of

Theorem 1 by omitting the minimization from the central term. For all Ej, Ek ∈ Λ,

min
{
πα(j)θj , πβ(j)ζ

j

}
≤ c(Ej, Ek) ≤ min

{
πα(j)(θj + 1) , πβ(j)(ζ

j
+ 1)

}
,

which, substituting the definitions of θj, ζj and taking limits, implies

c(Ej, Ek)

N

N→∞−−−→ min

{
πα(j)πβ(j)

πβ(j) + π∗β
,
πα(j)πβ(j)

πα(j) + π∗α

}
. (3)

Note that the RHS of (3) is independent of k. As any g ∈ G(Ei) must contain exactly one

9See Sandholm (2010) for intricacies that arise for some dynamics regarding the ‘if and only if’ part of
this statement.
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edge from each Ej, j 6= i, the definition of SP (Ei) and (3) imply

SP (Ei)

N

N→∞−−−→
∑
j 6=i

min

{
πα(j)πβ(j)

πβ(j) + π∗β
,
πα(j)πβ(j)

πα(j) + π∗α

}
. (4)

As the summation in the RHS of expression (4) omits the summand for j = i, it must be

that higher values of min
{
πα(i)πβ(i)

πβ(i)+π∗β
,
πα(i)πβ(i)

πα(i)+π∗α

}
correspond to lower values of SP (Ei). We

have proved the following corollary to Theorem 1.

Corollary 1. Under Assumption 1, if strategy i ∈ S uniquely maximizes min
{
πα(i)πβ(i)

πβ(i)+π∗β
,
πα(i)πβ(i)

πα(i)+π∗α

}
,

then there exists N such that for all N > N , Ei is the unique stochastically stable state.

α-agent

β-agent
0 1 2 3

0 2, 0 0, 0 0, 0 0, 0
1 0, 0 2, 1 0, 0 0, 0
2 0, 0 0, 0 1, 2 0, 0
3 0, 0 0, 0 0, 0 0, 3

Figure 2: Game considered in Example 2.

Example 2. Consider the logit dynamics and the game in Figure 2. Λ = {E1, E2}. Cal-

culating the values of min
{
πα(i)πβ(i)

πβ(i)+π∗β
,
πα(i)πβ(i)

πα(i)+π∗α

}
we obtain 1/2 for i = 1 and 2/5 for i = 2.

Therefore, by Corollary 1, for large enough N , SS = {E1}. Note the dependence on N being

large enough. If N = 1, then a single mistake by the β-agent suffices to move from E1 to E2

at cost c(E1, E2) = 1. Similarly, a single mistake by the α-agent suffices to move from E2 to

E1 at cost c(E2, E1) = 1. Therefore, if N = 1 then SS = {E1, E2}.

Under Assumption 1, from any convention Ei, the least cost escape path can be ap-

proximated by escape paths to states at which every agent in one position (α or β) plays

a strategy that corresponds to an extremal Nash Equilibrium that would give them their

maximum payoff and would give agents in the other position zero payoff. From these states,

agents in the other position obtain zero expected payoff from any strategy, so any strategy is

a best response and any convention can be reached with zero cost. Hence, Assumption 1 im-

plies that, for large N , the transition cost from a given convention Ei to any other convention

is approximately equal to the cost of escaping the basin of attraction of Ei. Therefore, if it

is harder to escape the basin of attraction of Ei than it is to escape the basin of attraction of

any other convention, then Ei will have lower stochastic potential than any other convention

and thus be uniquely stochastically stable.
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One setup that can satisfy Assumption 1 is when the payoffs on the diagonal of a coor-

dination game represent the efficient frontier of a bargaining set as in Young (1998a). The

cited paper found a link between coordination games with many strategies and the Kalai

and Smorodinsky (1975) bargaining solution. Naidu, Hwang and Bowles (2010) subsequently

found a link between coordination games and the Nash (1950) bargaining solution. Both

of the above results were for uniform error processes. For logit errors, such problems were

unsolved until Hwang and Newton (2014), which uses the results of the current paper.

Of course, Assumption 1 is quite restrictive. The further characterization of stochastic

stability for coordination games that are neither potential games nor satisfy Assumption 1

is an open problem, although Theorem 1 should prove helpful in this respect.

5. Proof of Theorem

To express transitions by agents from one strategy to another more succinctly, we write

eαi := ((0, · · · , N, · · · , 0), (0, · · · , 0, · · · , 0)), N in ith position

eβj := ((0, · · · , 0, · · · , 0), (0, · · · , N, · · · , 0)), N in jth position.

Define vα,i,j, vβ,i,j functions, noting that they are linear in x,

vα,i,j(xβ) =
xβ(i)

N
πα(i)− xβ(j)

N
πα(j), vβ,i,j(xα) =

xα(i)

N
πβ(i)− xα(j)

N
πβ(j). (5)

Note that if x ∈ D(Ei), then V (x, xγ,i,j) = vγ,i,j(xγ−). In particular, if xα(i) ≥ N − θ̄ij,

xα(i) + xα(j) = N and xβ(i) ≥ N − ζ̄ij, xβ(i) + xβ(j) = N , then x ∈ D(Ei).

For a path Γ = (x1, x2, · · · , xt) ∈ P(x1, xt), we write V (Γ) :=
∑t−1

l=1 V (xl, xl+1). Let

D̄(Ej) := {x ∈ Ξ : there exists a path Γ from x to Ej such that V (Γ) = 0}.

We shall use the notation (α, k, l; θ) to denote a number θ of α-agents switching, in succession,

from action k to action l. Similarly, let (β, k′, l′; ζ) denote a number ζ of β-agents switching

from action k to action l. Consider a path escaping D(Ei), Γ = (x1, x2, · · · , xt), x1 = Ei,

x1, · · · , xt−1 ∈ D(Ei) and xt ∈ D̄(Ej) for some j 6= i. Suppose Γ consists of the following

transitions:

(α, k1, l1; θ1)→ (α, k2, l2; θ2)→ (β, k′1, l
′
1; ζ1)→ (α, k3, l3; θ3)→ (6)

· · · → (β, k′M ′ , l
′
M ′ ; ζM ′)→ (α, kM , lM ; ζM),

where θm denotes the number of consecutive transitions in which α-agents switch from km
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to lm, and ζq denotes the number of consecutive transitions in which β-agents switch from k′q

to l′q. The following lemma states that if the resistance of a transition from i to some other

strategy is zero, then it must be the case that the total number of previous transitions from

i exceeds either θi or ζ
i
.

Lemma 1 (Estimation of basin of attraction). For a path of transitions described as in (6),

the following statements hold.

(1) Let y be a state in Γ immediately after the transitions (α, km̃, lm̃; θm̃). If vβ,i,k(yα) ≤ 0 for

some k, then
∑
{m:km=i,m≤m̃} θm > θi

(2) Let y be a state in Γ immediately after the transitions (β, k′q̃, l
′
q̃; ζq̃). If vα,i,k(yβ) ≤ 0 for

some k, then
∑
{q:k′q=i, q≤q̃}

ζq > ζ
i

Proof. We first show that (1) holds. First we establish that if yα(i) ≥ N−θi, then vβ,i,k(yα) >

0 for all k. Let y ∈ Ξ be such that yα(i) ≥ N − θi. If y = (eαi , yβ), then vβ,i,k(yα) > 0 for all

k and we are done. Thus suppose that yα(i) 6= N. We define

cj :=
yα(j)

N − yα(i)
.

for j = 1, 2, · · · , i− 1, i+ 1, · · · , n. Then,
∑

j 6=i cj = 1, and

yα = c1(N − yα(i), 0, · · · , 0, yα(i), 0, · · · , 0) + c2(0, N − yα(i), · · · , 0, yα(i), 0, · · · , 0)

+ cn(0, · · · , 0, yα(i), 0, · · · , N − yα(i))

=
∑
j 6=i

cj(
yα(i)

N
eαi +

N − yα(i)

N
eαj ).

Therefore,

vβ,i,k(yα) = vβ,i,k(
∑
j 6=i

cj(
yα(i)

N
eαi +

N − yα(i)

N
eαj )) =

∑
j 6=i

cjv
β,i,k(

yα(i)

N
eαi +

N − yα(i)

N
eαj )

≥ vβ,i,k(
yα(i)

N
eαi +

N − yα(i)

N
eαk ) > 0

where the first inequality follows from the fact that vβ,i,k(x) is decreasing in xα(k), and the

second inequality follows from yα(i) ≥ N − θi ≥ N − θ̄ik. This shows that if yα(i) ≥ N − θi,
vβ,i,k(yα) > 0 for all k. Thus if vβ,i,k(yα) ≤ 0 for some k, yα(i) < N − θi. Let y be the state

in Γ immediately after (α, km̃, lm̃; θm̃). We have

yα(i) = N −
∑

{m:km=i,
m≤m̃}

θm +
∑

{m:lm=i,
m≤m̃}

θm
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So ∑
{m:km=i,

m≤m̃}

θm = N − yα(i) +
∑

{m:lm=i,
m≤m̃}

θm ≥ N − yα(i) > N − (N − θi) = θi,

and Statement (1) of the Lemma is proven. Statement (2) follows similarly.

Consider again a path Γ from Ei to D̄(Ej) described as in (6). We seek a lower bound

for V (Γ). As Γ exits D(Ei), and for x /∈ D(Ei) we have vα,i,k(xβ) ≤ 0 or vα,i,k(xα) ≤ 0, by

Lemma 1 it must be that
∑
{m:km=i} θm > θi or

∑
{q:kq=i} ζq > ζ

i
. Let Γ̃ be the path that

is identical to Γ up until the point at which either exactly θi transitions away from i have

been made by α-agents or exactly ζ
i

transitions away from i have been made by β-agents,

whichever occurs first, at which point Γ̃ terminates. By the definition of V (.), it must be

that V (Γ) is bounded below by V (Γ̃).

Without loss of generality, assume that on Γ the θith transition away from i by an α-

agent occurs before the ζ
i
th transition away from i (if it occurs) by a β-agent. Then, letting

M̃ index the final transitions of Γ̃, we have
∑
{m:km=i,

m≤M̃}
θm = θi.

If x is the state in Γ̃ immediately after (α, km̃, lm̃; θm̃), then

V (x, xβ,i,l) = vβ,i,l(xα) ≥ vβ,i,l(ym̃α ), where ym̃α (i) = N −
∑

{m:km=i,
m≤m̃}

θm, y
m̃
α (l) =

∑
{m:km=i,
m≤m̃}

θm.

That is, the resistance V (., .), of a transition by a β-agent from i to l is bounded below by

what the resistance would be if every previous transition away from i were to l and there

were no other transitions. A similar inequality applies for V (x, xα,i,l).

Let qm denote the index of the latest transition by β-agents prior to the mth transition

by α-agents. Similarly let mq denote the index of the latest transition by α-agents prior to

the qth transition by α-agents. Define

rm(ζ1, · · · , ζqm) := vα,i,lm(yqmβ ), uq(θ1, · · · , θmq) := vβ,i,l
′
q(ymqα ).

Note that rm, uq are affine functions. Then, omitting any terms in V (Γ̃) related to transitions
other than those from i (km, k

′
q 6= i), V (Γ̃), and hence V (Γ), is bounded below by

ϕ(θ, ζ) := r1θ1 +u1(θ1)ζ1 + · · ·+rmq̃
(ζ1, · · · , ζq̃−1)θmq̃

+uq̃(θ1, · · · , θmq̃
)ζq̃ + · · ·+rM̃ (ζ1, · · · , ζM̃ ′)θM̃ . (7)

This implies that V (Γ) is bounded below by the solution to the following minimization
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problem:

min{ϕ(θ, ζ) : 0 ≤ θm ≤ θi, 0 ≤ ζq ≤ ζi, 1 ≤ m ≤ M̃, 1 ≤ q ≤ M̃ ′,
M̃∑

m=1

θm = θi,

M̃ ′∑
q=1

ζq ≤ ζi}. (8)

Similar problems can be defined for ϕ functions whose last term has a uM̃ ′(.) rather than

a rM̃(.). Note that by definition of θi, ζ i, we have that vα,i,lm(yqmβ ), vβ,i,l
′
q(y

mq
α ) and hence

rm(ζ1, · · · , ζqm), uq(θ1, · · · , θmq) are strictly positive as long as
∑M̃

m=1 θm ≤ θi and
∑M̃ ′

q=1 ζq ≤
ζ
i
.

Proof of Theorem 1. Consider again a path Γ from Ei to D̄(Ej) described as in (6). By

Lemma 1 such a path must include either at least θi transitions away from i by α-agents,

or at least ζ
i

transitions away from i by β-agents. Assume that on the path Γ the θith

transition away from i by an α-agent occurs before the ζ
i
th transition away from i (if it

occurs) by a β-agent (the alternative case follows similarly). Consider a ϕ function based on

Γ and the minimization problem given by (7) and (8). Let (θ∗, ζ∗) be the optimal choices.

As
∑M̃

m=1 θm = θ∗i ,
∑M̃ ′

q=1 ζ
∗
q ≤ ζ

i
, we have rm(ζ∗) > 0, uq(θ

∗) > 0 for all m, q.

We first show that θ∗m̄ = θi for some m̄ and θ∗m = 0 for all m 6= m̄. Suppose θ∗m1
and θ∗m2

such that m1 < m2 and 0 < θ∗m1
, θ∗m2

< θi. Now, by linearity, replacing (θ∗m1
, θ∗m2

) by either

(θ∗m1
+ 1, θ∗m2

− 1) or (θ∗m1
− 1, θ∗m2

+ 1) must lead to a weakly lower value of ϕ(., .). A strictly

lower value contradicts optimality of θ∗. If the new value equals ϕ(θ∗, ζ∗), then repeat the

argument until θ∗m1
= 0 or θ∗m2

= 0. Repeat with other pairs until θ∗m̄ = θi for some m̄ and

θ∗m = 0 for all m 6= m̄.

For q > qm̄, setting ζ∗q > 0 cannot help as θm = 0 for m > m̄, so any change to rm(.)

will have no effect. So ζ∗q = 0 for q > qm̄. For q ≤ qm̄, as uq(θ
∗) > 0 for all q and

θm = 0 for m < m̄, by a similar linearity argument to that used above, it must be that

ζ∗q ∈ {0, ζ i}. If ζ∗q = 0 for all q ≤ qm̄, then rm̄(ζ∗) = vα,i,lm̄(eβi ) = πα(i). If ζ∗q̄ = ζ
i

for some

q̄ ≤ qm̄, then uq̄(θ
∗) = vβ,i,lq̄(eαi ) = πβ(i). Taken together, these values for (θ∗, ζ∗) imply that

ϕ(θ∗, ζ∗) ≥ min{πα(i)θi, πβ(i)ζ
i
}.

Similarly, the alternative case of the ζ
i
th transition away from i by an β-agent occurring

before the θith transition away from i (if it occurs) by an α-agent leads to the same lower

bound.

Concerning the upper bound, let j∗α and j∗β be the states to which the direct escaping

costs are minimal, that is j∗α solves minj∈S(θ̄ij + 1), and j∗β solves minj∈S(ζ̄ij + 1). The upper

bound follows by either choosing a path consisting solely of θ̄ij∗α + 1 transitions by α-agents

from i to j∗α, or a path comprising ζ̄ij∗β + 1 transitions by β-agents from i to j∗β.
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