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1. Introduction

Consider a two player coordination game with zero-payoffs for miscoordination and with

payoffs on the main diagonal that correspond to points on the efficient frontier of a convex

bargaining set. In his paper, ‘Conventional Contracts’, Young (1998a) showed that if pop-

ulations of agents play such a game, usually updating their strategies according to a best

response rule, but occasionally making an error and playing something other than a best

response, then the long run social norm that emerges approximates the Kalai and Smorodin-

sky (1975) bargaining solution. Subsequently, Naidu, Hwang and Bowles (2010) showed that

if errors are intentional so that an agent who makes an error always demands more than

the best response, never less, then the Nash (1950) bargaining solution emerges as the long

run social norm. The errors in the cited works are uniform – all possible errors are equally

likely. However, there is another commonly used model of perturbed best response, the logit

choice rule. Under logit choice, errors which incur a higher payoff loss for the agent making

them are less likely to be made. The recent approximation results of Hwang and Newton

(2016) allow us to solve the problem of conventional contracts under logit choice.

It is shown that if the logit choice rule is used with intentional errors, then the Egalitarian

bargaining solution (Kalai, 1977) is selected. Justifications of Egalitarianism have usually

assumed some symmetry in the problem faced (Alexander and Skyrms, 1999) or invoked ex-

ante symmetry of players with respect to their position in the game (Binmore, 1998, 2005).

One contribution of the current paper is to give a model of adaptive behavior that leads

to the Egalitarian solution without any symmetry assumptions beyond those on population

size and uniformity in matching.

Furthermore, we introduce a new bargaining solution, the Logit bargaining solution, that

maximizes an adjusted Nash product, but, in the spirit of the Kalai-Smorodinsky solution, is

influenced by the best possible payoffs for the players. Unlike the other solutions, the Logit

bargaining solution is not designed to satisfy any particular set of appealing properties, but

is instead the solution that emerges when agents in populations follow a given behavioral

rule, the logit choice rule. This highlights an important difference between the traditional

approach to bargaining solutions and the evolutionary approach. The traditional approach

seeks to construct bargaining solutions with appealing properties and treats these properties

as axiomatic. The evolutionary approach takes the behavioral process as axiomatic and

sees what bargaining solutions emerge as long run norms of such processes. Given this,

it is remarkable that three of the processes in Table 1 lead to solutions already known to

the literature. In this sense, perhaps the fourth sibling of this family, the Logit bargaining

solution, provides a cautionary tale, for although it emerges from one of the simplest and

most common choice rules in the social sciences, it displays a quirky nonmonotonicity in
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Unintentional Intentional

Uniform Kalai-Smorodinsky Nash bargaining

Logit Logit bargaining Egalitarian

Table 1: Stochastically stable bargaining solutions by error process. Each bargaining solution can be justified
by the corresponding behavioral rule and without reference to any appealing ex-post properties that the
solution might have.

comparison to the other solutions. This nonmonotonicity can be clearly and intuitively

explained with reference to the underlying behavioral process, a good example of how a

complex social norm can be generated by simple behavior.

Of course, the importance of the implications of any behavioral rule rests to some extent

on its empirical validity. To begin to address such questions we report the results of exper-

iments conducted to test error behavior in the context of the model of the paper. We find

evidence in favour of intentional bias and payoff dependence in non-best response play. While

the constraints of time means that we cannot test the long run behavior of the empirical

process, these results suggest the Egalitarian solution as the most likely of our four candi-

dates for a long run bargaining norm. Importantly, our design gives subjects no information

about the payoffs that can be attained by their potential opponents, thereby ensuring that

neither pre-existing norms of surplus division nor other-regarding preferences can play a role

in strategy choice.

This study is part of the Evolutionary Nash Program, a literature that studies connections

between evolutionary game theory and cooperative game theory.1 The most developed part

of this literature concerns stochastic stability in Nash demand games.2 Young (1993b) shows

that in two player Nash demand games, the Nash bargaining solution is stochastically stable.

Agastya (1999) shows that if a cooperative game is modelled as a generalized Nash demand

game, then the stochastically stable states are states in the core at which the maximum

payoff over all players is minimized. Newton (2012b) shows that, under some conditions,

the addition of collective agency to such models leads to Rawlsian selection within the

(interior/strong) core, maximizing the minimum payoff over all players. For the assignment

game (Shapley and Shubik, 1971), a cooperative game for which the core has an empty

interior so the methods of Newton (2012b) cannot be applied, Nax and Pradelski (2014)

have recently shown a maxmin selection result within the core. Interestingly, although both

1See http://sharedintentions.net/research/evo-nash-program/ for a discussion of the Evolution-
ary Nash Program and the Shared Intentions Agenda.

2See Binmore, Samuelson and Young (2003) for a discussion of differences and similarities between Nash
demand games and games with zero payoffs off-diagonal when errors are uniform and unintentional.
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papers attain similar results, these results arise in different ways. Nax and Pradelski (2014)

use logit errors. Selection then comes from (i) how hard it is for a player to make errors.

Newton (2012b) uses uniform errors and sampling of opponents’ behavior: selection comes

from (ii) how many errors are required to induce a player to respond differently to the

currently conventional strategy. In the papers cited above, these effects turn out to work

towards a similar result. The results of the current paper on the Logit Bargaining Solution

show how effects (i) and (ii) can combine to create interesting nonmonotonicities.

Our experiments contribute to a small literature that considers non-best response behav-

ior in laboratory data as analagous to errors in best response dynamics. For two strategy

coordination games, when interaction is determined by a network, Mäs and Nax (2016) find

errors to be payoff dependent. When interaction is uniform, Lim and Neary (2016) find

likewise. Furthermore, the cited studies find that errors are predominantly made by agents

who do relatively badly at the current convention. This points towards errors being inten-

tional. The current study has more than two strategies and is therefore able to provide more

conclusive evidence on this point, as any given agent has several possible errors that he could

make, some of which can be interpreted as intentional and others which cannot. We find

that 83% of errors in our experiments can be interpreted as intentional.

The paper is organized as follows. Section 2 defines the bargaining solutions and gives

the evolutionary model. Section 3 classifies bargaining solutions by the evolutionary pertur-

bations which give rise to them. Section 4 discusses the Logit bargaining solution. Section

5 discusses our experimental evidence. Section 6 concludes.

2. Model

2.1. Bargaining solutions

Consider two positions, α and β, and a closed, convex bargaining set S ⊂ R2 containing

the origin. The set S gives feasible payoffs for players in the α and β positions respectively.

Let the bargaining frontier, the efficient points of S, be given by a strictly decreasing, differ-

entiable, and concave function, f(.) : R→ R, such that (t, f(t)) is the efficient payoff pair in

which α and β players receive t and f(t), respectively. Normalizing the disagreement point

to (0, 0), the maximum payoff that players α and β can obtain are

s̄α := max {t : f(t) ≥ 0} and s̄β := max {f(t) : t ≥ 0} .

A bargaining solution maps bargaining sets to payoffs. The three bargaining solutions

most commonly used in economics are the Nash bargaining solution (Nash, 1950), the Kalai-

Smorodinsky bargaining solution (Kalai and Smorodinsky, 1975), and the Egalitarian bar-
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Bargaining solution Notation Definition

Kalai and Smorodinsky (1975) tKS tKS

s̄α
= f(tKS)

s̄β
.

Nash (1950) tNB tNB ∈ arg max0≤t≤s̄α tf(t).

Egalitarian (1977) tE tE = f(tE).

Logit bargaining solution tL tL ∈ arg max0≤t≤s̄α t f(t)φ(t),

φ(t) = min
{

1
t+s̄α

, 1
f(t)+s̄β

}
.

Table 2: Bargaining solutions for frontiers given by f(.). Our assumptions on f(.) guarantee that t f(t)φ(t)
is strictly concave, so tL is unique.

gaining solution (Kalai, 1977). These solutions uniquely satisfy distinct sets of intuitively

appealing properties. The traditional approach is to treat these properties as axiomatic and

to find bargaining solutions which have these properties. This is not the approach of the

current paper. Rather, we focus on how solutions emerge as long run behavioral norms when

agents follow simple behavioral rules when faced with coordination problems. That is, the

behavior that gives rise to the solution is treated as axiomatic rather than the properties of

the solution itself. Definitions of the bargaining solutions that feature in this paper are given

in Table 2. The Logit bargaining solution, which is new, is analyzed further and compared

to existing bargaining solutions in Section 4, but for now we move to define the perturbed

best response rules that lead to these solutions emerging as norms.

2.2. Evolutionary contracting

Consider two populations of agents − α and β populations − of size N .3 Each period,

all agents are uniformly matched in heterogeneous pairs of one α-agent and one β-agent to

play a coordination game. The set of possible outcomes on which coordination is possible

corresponds to a bargaining frontier as described in Section 2.1. Similarly to previous lit-

erature, we discretize the bargaining frontier as follows. Let n ∈ N+, δ = δn = n−1s̄α, and

I := {0, 1, 2, · · · , n} and suppose that α and β-agents play strategies iα and iβ from set I.

We consider contract games (Young, 1998a), coordination games in which players who

demand the same outcome receive their associated payoffs, and receive nothing otherwise.

3Exposition is simplified by the assumption that the populations are of the same size. This is always the
case when the two populations represent roles played by different agents in the same population. That is,
each agent could be considered to appear twice: he will play one strategy when he plays as an α-player,
and another strategy when he plays as a β-player. This differs from one population models of coordination
games with two types (e.g. Neary, 2012) as there is always an α-player and a β-player in any matched pair.
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That is, the payoffs for a contract game are

(πα(iα, iβ), πβ(iβ, iα)) :=

{
(iδ, f(iδ)) if iα = iβ = i

(0, 0) otherwise
.

Thus, when an α-agent plays i ∈ I this can be interpreted as him demanding iδ, and when

a β-agent plays i ∈ I this can be interpreted as him demanding f(iδ).4

A population state is described by x := (xα, xβ), where xα and xβ are vectors giving the

number of agents using each strategy. Thus, the state space Ξ is

Ξ :=

{
(xα, xβ) ∈ Nn+1

0 × Nn+1
0 :

∑
l∈I

xα(l) = N,
∑
l∈I

xβ(l) = N

}
.

More explicitly, we have (xα, xβ) = ((xα(0), xα(1), · · · , xα(n)), (xβ(0), xβ(1), · · · , xβ(n))),

where xβ(2), for example, denotes the number of β-agents playing strategy 2.

Agents from each population are uniformly matched to play the contract game and thus,

the expected payoff of an α agent who plays strategy iα is πα(iα, x) :=
∑

l∈I πα(iα, l)xβ(l)/N ,

given that the fraction of the β population using strategy l is xβ(l)/N. Similarly, the expected

payoff of a β-agent who plays strategy iβ is πβ(iβ, x) :=
∑

l∈I πβ(iβ, l)xα(l)/N . Thus, the

best response of an α-agent to state x is to choose i to maximize πα(i, i)xβ(i), and the best

response of a β-agent is to choose i to maximize πβ(i, i)xα(i).

We consider the following discrete time strategy updating process. At the beginning of

each period, any given agent is independently activated with probability ν ∈ (0, 1). Any

agent who is not activated will remain playing the same strategy as he did in the previous

period. When the current population state is x, an activated agent in population γ ∈ {α, β}
will choose a strategy according to the distribution pηγ(l|x), l ∈ I. This distribution will be

such that an activated agent will usually choose a best response to the profile of strategies

played by the opposing population. However, from time to time, an agent will make an

error and play something other than a best response. The parameter η parameterizes the

probability of such errors, with larger values of η corresponding to higher error probabilities.

As η approaches zero, the probability of an error should approach zero at an exponential rate.

Errors can be understood as occasional idiosyncratic experimentation, mistakes in play, or

as atypical choices arising from random utility shocks. This paper considers processes with

perturbations varying in two dimensions: errors can be uniform or logit, and they can be

intentional or unintentional.

4Note that the discretization is uniform for α, but not for β. This can be reversed without changing
results.
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Uniform mistake rule (see e.g. Young, 1993a; Kandori et al., 1993).

When errors are uniform, every error occurs with the same probability. That is, from

state x, a strategy-revising agent from population γ ∈ {α, β} will choose l with probability

pηγ(l|x) :=


1

|arg maxl̃ πγ(l̃,x)|(1− ε) + 1
n+1

ε if l ∈ arg maxl̃ πγ(l̃, x)

1
n+1

ε otherwise

where ε = exp(−η−1). Note, that as required above, as η → 0, the probability of a strategy-

revising agent playing anything other than a best response approaches zero.

Logit choice rule (see e.g. Blume, 1993, 1996; Alós-Ferrer and Netzer, 2010).

Under the (generalized) logit choice rule, from state x, a strategy-revising agent from

population γ ∈ {α, β} will choose strategy l with probability

pηγ(l|x) :=
ql exp(η−1πγ(l, x))∑
l̃ ql̃ exp(η−1πγ(l̃, x))

(1)

where ql, l ∈ I, are positive constants. Again note that as η → 0, the probability of a

strategy-revising agent playing anything other than a best response approaches zero.

Intentional & Unintentional errors (see e.g. Bowles, 2005, 2006; Naidu et al., 2010).

Let ∆γ(x) be the set of strategies for an agent of type γ ∈ {α, β} which involve demanding

at least as much as the agent demands when best responding to the strategy distribution of

the other population.

∆γ(x) := {l : πγ(l, l) ≥ πγ(l
′, l′) for some l′ ∈ arg max

l̃
πγ(l̃, x)}.

Unintentional error processes retain the probabilities pηγ(l|x) described above for logit and

uniform errors. Intentional errors are when agents never demand less than their best re-

sponse, but can demand more. This fits with an interpretation of the perturbations as

idiosyncratic experimentation by agents to see if they can obtain a higher payoff. There

exists recent experimental evidence which supports such errors (Lim and Neary, 2016; Mäs

and Nax, 2016). The choice probabilities for intentional processes are

p̂ηγ(l|x) :=


pηγ(l|x)∑

l̃∈∆γ (x) p
η
γ(l̃|x)

if l ∈ ∆γ(x)

0 otherwise

where pηγ(l|x) denotes the choice probability for the corresponding unintentional process.
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2.3. Conventions and stochastic stability

The process with η = 0, or ε = 0, is the unperturbed process. The recurrent classes of the

unperturbed process are the absorbing states in which all α and β-agents coordinate on the

same strategy, and each agent type receives nonzero payoff (Young, 1998a). We shall denote

by Ei, i ∈ {0, . . . , n}, the state in which all agents play strategy i, xα(i) = N , xβ(i) = N .

Hence, the absorbing states of the process are precisely those in the set {E1, . . . , En−1}.
Following Young (1993a), we refer to these states as conventions. Let L := {1, . . . , n − 1}
index this set, {Ei}i∈L.

We consider the long run behavior of our perturbed processes when errors are unlikely,

that is as η → 0. For the current model, each process, uniform or logit, unintentional

or intentional, for given η > 0, has a unique stationary distribution, which we denote µη

(see Lemma 1 in Appendix A). By standard arguments (see Young, 1998b), the limit µ :=

limη→0 µη exists, and for any x ∈ Ξ, µ(x) > 0 implies that x is in a recurrent class of the

process with η = 0. In our setting, this implies that x is a convention.

Definition 1. A state x ∈ Ξ is stochastically stable if µ(x) > 0.

For small error probabilities, in the long run, our processes will spend nearly all of the

time at or close to stochastically stable states, hence the interpretation of such states as

long run social norms. In the next section we link the stochastically stable states of our four

processes to our four bargaining solutions.

3. Characterization

In this section we characterize the stochastically stable conventions. For a fine discretiza-

tion (small δ) and large populations (large N), the stochastically stable conventions of our

four processes correspond to our four bargaining solutions. The results for uniform errors

are known from Young (1998a) and Naidu, Hwang and Bowles (2010). The results for logit

errors are new.

Theorem 1. For any ς > 0, there exists δ̄ such that for all δ < δ̄, there exists Nδ ∈ N such
that for all N ≥ Nδ, µ(Ei) > 0 =⇒ |δi− t∗| < ς, where

t∗ =


tKS if errors are uniform-unintentional.
tL if errors are logit-unintentional.
tNB if errors are uniform-intentional.
tE if errors are logit-intentional.

The reasons for each process giving rise to its corresponding solution can, for the most

part, be simply and intuitively explained. For unintentional errors, any strategy can be
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played in error. From the perspective of a β-agent, the most attractive error that can be

made by α-agents is for them to switch to strategy 0, as this opens up the possibility of

β-agents obtaining their highest payoff of s̄β by coordinating with such an α-agent. From

a convention Ei, δi = t, the number of such errors required to make the best response for

a β-agent differ from i depends on the ratio of the payoff from successful coordination on

the current convention, f(t), to the highest payoff s̄β (see expression in Table 3). If f(t) is

small relative to s̄β, then few errors by α-agents will be required to escape the convention.

Reprising this argument, we see that t is small relative to s̄α, then few errors by β-agents

will be required to escape the convention. For uniform errors, all possible errors are equally

likely, so the difficulty of escaping a convention depends only on the number of errors required

to change the best response. This number is maximized when the payoff ratios discussed

above are equal: the Kalai-Smorodinsky solution.

When errors are intentional, agents who make errors will always ask for more than they

receive at the current convention. From convention Ei, δi = t, from the perspective of a

β-agent, the most attractive error that can be made by α-agents is for them to ask for t+ δ,

just a little bit more than they currently receive. The number of errors required to change

the best response of β-agents then depends on the ratio f(t+ δ)/f(t) (see expression in Table 3).

This quantity (f(t+ δ)/f(t)) and the equivalent quantity for transitions driven by the errors of

β-agents (− δ/t) are respectively increasing and decreasing in t. For uniform errors, the most

robust convention is thus where these quantities are equal: the Nash bargaining solution.

For logit errors, to find the rareness of transitions the number of errors must be weighted

by the payoff losses incurred when the errors are made. For intentional errors, as the dis-

cretization becomes fine, f(t+ δ)/f(t)→ 1 for all strictly positive t, so the number of α-agents

who must make errors in order to alter the best response of β-agents will approach half.

Likewise, the number of β-agents who must make errors in order to alter the best response

of α-agents will also approach half. This means that the payoff loss effect dominates and

the most robust conventions are those at which errors by either population are as rare as

possible. This occurs when the payoffs of α and β players are equal: the Egalitarian solution.

For logit-unintentional errors, the effects linking the Kalai-Smorodinsky solution to uniform-

unintentional errors and linking the Egalitarian solution to logit-intentional errors interact.

They do this in a non-trivial way, giving rise to a piecewise solution, sometimes an adjusted

Nash bargaining solution, sometimes a form of loss equalization. The logit effect means that

errors are more common when made by relatively poor agents, but the unintentional effect

means that fewer errors by the other population are required to change the best response of

relatively poor agents. Importantly, the logit effect dominates here so that the easiest escape

paths are driven by the errors of poor agents, in contrast to the uniform-unintentional case.
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On the easiest escape path from
convention Ei, δi = t, under...

Uniform
Unintentional

Logit
Unintentional

Uniform
Intentional

Logit
Intentional

Who makes errors, relatively rich
agents or relatively poor agents?

Rich Poor Poor Poor

Assuming these are α-agents and
receive t at the current convention...

What do they ‘demand’ when they
make an error?

Zero Zero t+ δ t+ δ

The probability of such errors
decreases exponentially at rate...

N/A t N/A t

As t increases, this quantity... — ↗ — ↗

The number of errors required to
induce something other than f(t) as
the best response by β-agents.

f(t)
f(t)+s̄β

f(t)
f(t)+s̄β

f(t)
f(t)+f(t+δ)

f(t)
f(t)+f(t+δ)

As t increases, this quantity... ↘ ↘ ↗ ↗

Net effect of an increase in t on the
rareness of such escape paths

↘ ↗↘ ↗ ↗

The convention that is hardest to
leave can be approximated by...

tKS tL tNB tE

Table 3: Anatomy of the easiest escape path from a given convention Ei, δi = t, by error process.

In the next section we turn to look in more detail at the Logit bargaining solution.

4. The Logit bargaining solution

To facilitate our understanding of the Logit bargaining solution, it helps to rewrite tL as

tL = arg max
0≤t≤s̄α

min{h1(t), h3(t)}, h1(t) :=
tf(t)

f(t) + s̄β
, h3(t) :=

tf(t)

t+ s̄α
. (2)

We denote the maximizers of h1(t), h3(t) by t1, t3 respectively.

tl := arg max
0≤t≤s̄α

hl(t), l = 1, 3.

When h1(t) and h3(t) intersect for 0 ≤ t ≤ s̄α, that is for 1
2
≤ s̄α

s̄β
≤ 2, we let t2 be the value

of t for which this intersection occurs. That is, t2 solves

t2 + s̄α = f(t2) + s̄β. (3)

9



Property Definition Satisfied by...

IIA g ≥ f, g(t∗g) ≤ f(t∗g) =⇒ t∗g = t∗f . tNB, tE

Invariance g(x) = f(ax), a ∈ R =⇒ t∗g = 1
a
t∗f . tNB, tKS

Monotonicity g ≥ f =⇒ t∗g ≥ t∗f . tE

Individual Monotonicity g ≥ f, g(0) = f(0) =⇒ t∗g ≥ t∗f . tKS, tE

Stretch Monotonicity g(x) = f(ax), a ∈ R, a < 1 =⇒ t∗g ≥ t∗f . tNB, tKS, tE

Table 4: Definitions of properties and the bargaining solutions that satisfy them. In each definition, g, f
are bargaining frontiers and t∗g, t

∗
f their associated solutions. Invariance implies Stretch Monotonicity, and

Monotonicity implies Individual Monotonicity which implies Stretch Monotonicity. Note that tL satisfies
none of these properties.

Remark 1. The Logit bargaining solution solves

tL :=


t1 if h1(t1) < h3(t1), (Case 1)
t3 if h3(t3) < h1(t3) , (Case 3)
t2 otherwise. (Case 2)

The cases of the solution are numbered by the order in which they occur as the ratio s̄α/̄sβ

moves from low to high values. For low values of s̄α/̄sβ, the maximum of h1(·) lies underneath

the curve of h3(·). This is when Case 1 holds. For high values of s̄α/̄sβ, the maximum of h3(·)
lies underneath the curve of h1(·) and we are in Case 3. For values of s̄α/̄sβ close to 1, the

maximizer of (2) is determined by the intersection of h1(·) and h3(·) and we are in Case 2.

In Case 1 and Case 3, the Logit solution is similar to the Nash solution, but adjusted

to take into account the best possible outcome for one of the players. Comparing the first

order condition for the Nash bargaining solution:

tNBf ′(tNB) + f(tNB) = 0

to the first order conditions for the Logit bargaining solution in Cases 1 and 3 respectively:

tLf ′(tL) +
s̄β + f(tL)

s̄β
f(tL) = 0, tLf ′(tL) +

s̄α
tL + s̄α

f(tL) = 0.

we see that Player α obtains more in Case 1 and less in Case 3 than he does under the Nash

solution. Moreover, in Case 3, an increase in s̄α results in Player α achieving a higher payoff.

This increase of Player α’s payoff in his best possible payoff differs from the similar effect in

the Kalai-Smorodinsky solution. The effect in the latter depends on the ratio of s̄α and s̄β,

whereas in Case 3 of the Logit solution, changes in s̄β have no direct effect. Symmetrically, in

Case 1 the solution depends on f(.) and s̄β, but not directly on s̄α. Note that the presence of
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45◦

tE

tKS

tL

s̄αs̄β

s̄β

s̄α

Figure 1: Case 2 of the Logit bargaining solution, also illustrating Egalitarian and Kalai-Smorodinsky
solutions for comparison.

s̄α and s̄β in the Logit bargaining solution means that, unlike the Nash bargaining solution,

the Independence of Irrelevant Alternatives (IIA - Table 4) property does not hold. This

is noteworthy, as for the logit choice rule, the ratios of choice probabilities pηγ(l|x)/pηγ(l′|x) are

independent of the payoffs from any strategy l̃ 6= l, l′. This shows that the IIA property at a

micro level (choice behavior) does not translate into an IIA property at a macro level (long

run social norm).

When conditions for Case 2 are satisfied we see from Equation (3) and the illustration

in Figure 1 that Player γ’s payoff decreases with s̄γ. In fact, the solution is an Egalitarian

solution with a notional disagreement point of (s̄β, s̄α). The disagreement point is wholly

notional as it lies outside of the bargaining set. The players equalize their losses from this

notional disagreement point. This notional disagreement point for a player is equal to the

maximum attainable payoff of the other player (see Figure 1). This may seem puzzling at

first, but makes sense when we consider that, under logit errors, the easiest escape path from

a convention involves errors by relatively poor agents. Consider Case 2 and conventions for

which t < t2. These are the conventions at which α-agents obtain low payoffs and from which

the most likely escape paths involve errors by α-agents. The number of errors by α-agents

that is required to change the best response of β-agents is lower when the best possible payoff

s̄β for β-agents is higher. That is, α-agents would like β-agents to have a high best possible

payoff as this destabilizes the conventions where α-agents do badly and pushes the value of

t2 higher.

Moreover, we can make a stronger statement about non-monotonicity. Even for linear

bargaining frontiers, a weak Stretch Monotonicity property that is implied by Invariance
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Case Condition Solution

1 s̄α <
(

3
√

2
2
− 1
)−1

s̄β tL = (2−
√

2)s̄α

2
(

3
√

2
2
− 1
)−1

s̄β ≤ s̄α ≤
(

3
√

2
2
− 1
)
s̄β tL =

(2s̄β−s̄α)s̄α
s̄α+s̄β

3 s̄α >
(

3
√

2
2
− 1
)
s̄β tL = (

√
2− 1)s̄α

Table 5: Explicit expressions for the Logit bargaining solution when the frontier is linear.

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

Figure 2: tL by s̄α, keeping s̄β = 1.

and Individual Monotonicity (see Table 4), and thus satisfied by all of the other bargaining

solutions, is violated by the Logit bargaining solution. Consequently, the Logit bargaining

solution satisfies neither Individual Monotonicity nor Invariance.5 A linear frontier is given

by the equation f(t) = s̄β − t s̄βs̄α . Conditions under which each case of the solution pertains

and explicit solutions for each case are given in Table 5. An increase in s̄α is equivalent to

a stretch of the bargaining frontier parallel to the horizontal axis. It can be seen that when

Case 2 pertains, an increase in s̄α results in a reduction in tL, violating Stretch Monotonicity.

Figure 2 shows how, fixing s̄β, the payoff of Player α varies with s̄α.

5. Experimental evidence for intentional and payoff dependent errors

To study human agents’ non-best response behavior in a context derived from the model

of this paper, laboratory experiments were conducted on human subjects. Five sessions

were conducted in English at the experimental laboratory at the Hong Kong University

5It may be argued that invariance should be understood as a simple rescaling of payoffs, and that therefore
error probabilities should also be rescaled. The authors agree that should everything be rescaled, then
invariance will result. However, invariance as an axiom is more than just a statement about rescaling. It is
also a normative statement about how wealth affects bargaining power. It is this interpretation of invariance
that justifies an analysis of rescaled payoffs without a corresponding rescaling of error probabilities.
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α-player

β-player
1 2 3 4 5

1 0, 100 0, 0 0, 0 0, 0 0, 0
2 0, 0 80, 80 0, 0 0, 0 0, 0
3 0, 0 0, 0 130, 65 0, 0 0, 0
4 0, 0 0, 0 0, 0 180, 50 0, 0
5 0, 0 0, 0 0, 0 0, 0 200, 0

1

Figure 3: Entries give payoffs for the α and β players respectively.

of Science and Technology. A fixed-role, between-subject design was used. In total, 100

participants, none of whom had any prior experience with this work, were recruited from

the university graduate and undergraduate population. All sessions were conducted using

z-Tree (Fischbacher, 2007). Each session lasted for approximately two hours, and the average

amount earned per subject was HKD 132 (USD 17), including the HKD 30 show-up fee.

Each session involved α and β populations of subjects (representing the agents in the

model of Section 2) of size N = 10 playing for 200 periods. Each period, every subject,

independently with probability ν (= 0.9 in Sessions 1, 2, 3; = 0.5 in Sessions 4, 5), was

activated and got the opportunity to update his strategy. The information displayed to a

subject was:

(i) His own payoff when playing any given strategy and matched to a member of the other

population also playing that strategy.

(ii) For periods τ ≥ 2, the number of subjects in the other population who played each

strategy in the preceding period.

(iii) The strategy played and the payoff obtained by the subject in the preceding period.

(iv) Whether or not the subject has the opportunity to update his strategy in the current

period.

Note that subjects were given no information about the coordination payoffs of subjects in

the other population and the laboratory was set up to ensure that no subjects would gain

any such information during the session.

Subjects given the opportunity to change their strategy could choose any of strategies 1

to 5, which were labeled as A to E, the order of the labeling and the order of presentation of

the strategies differing across sessions. If they failed to choose a strategy within a specified

period, they remained playing the same strategy as in the previous period. Following strategy

updating, α-subjects were paired with β-subjects and obtained payoffs corresponding to their

13



Figure 4: Chart showing, for each session and player position (α or β) in the game, the number of non-
best responses that can be interpreted as intentional (those in ∆γ(x)) and that cannot be interpreted as
intentional (those not in ∆γ(x)), as well as totals across all sessions and positions. The area of each pie
chart is approximately proportional to the square root of the number of errors it represents.

chosen strategies played against one another in the game in Figure 3. The instructions given

to subjects and images of the decision making interface are given in Appendix B.

In every session, best responses constituted a large majority (> 90%) of choices by the

subjects and play converged to a convention. Analysis of non-best response play reveals

that subjects rarely update to strategies that correspond to payoffs lower than the payoff

associated with their best response strategy (see Figure 4). That is, there is clear support for

intentional behavior in non-best response play. As the game has five strategies, rather than

two as in recent similar studies (Lim and Neary, 2016; Mäs and Nax, 2016), we can observe

intentional bias even for given subjects with a given best response. Furthermore, we observe

higher rates of non-best response play from subjects for whom the expected payoff from the

best response strategy is lower (Figure 5). That is, there is support for payoff dependence

in non-best response play.

An important aspect of our design is that α-subjects do not know the coordination pay-

offs of β-subjects and vice versa. This brings two benefits. Firstly, the potential impact

of other-regarding preferences is minimized, as any beliefs about the payoffs of the oppos-

ing population would have to be inferred from behavior. Secondly, and we believe more
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Figure 5: Rates of non-best response play grouped by expected payoff from the best response strategy. Data
are grouped into bins by best response payoff (0 to 10, 10 to 20, etc.). The area of each circle on the chart
is proportional to the square root of the number of strategy updating opportunities it represents.

importantly, subjects’ strategy choice cannot be influenced by pre-existing social norms. If

subjects could observe the full payoff structure of the game, then a pre-existing norm such

as the Kalai-Smorodinsky, Nash, Egalitarian or Logit solutions could encourage subjects to

play i = 3, 4, 2, 3 respectively. The outcome of the sessions suggests that subjects did not

infer any correspondence between a pre-existing norm and the payoff structure of the game,

as of the five sessions, three converged to convention E4 (Nash), while one converged to E3

(Kalai-Smorodinsky, Logit) and one to E2 (Egalitarian).

The observed short run convergence to some convention is predicted by the theoretical

processes considered earlier in the paper. Note though that nothing can be inferred about

stochastic stability from observing the conventions that were reached. For such an analysis,

we would require observations over a longer timescale than is feasible within the constraints

of the laboratory.6 However, Theorem 1 can be used to comment on stochastic stability by

extrapolating from the characteristics of observed non-best response behavior. Our observa-

tions suggest that non-best response play is intentional and payoff dependent. Therefore, the

theory suggests that, of the four solutions considered in this paper, the Egalitarian solution

is the most likely candidate for a long run social norm.

6To see this via a rough calculation, note that when errors are intentional, the easiest path from one
convention to another will usually require 6 or more errors in one of the populations. In a period in which
all subjects in a given population have the opportunity to update their strategies, at error rates of 10%
(the approximate frequency observed in this study), 6 or more errors will occur with a probability of less
than 1/6000. Therefore to make a statement about stochastic stability using aggregate population data alone
would require sessions to last for considerably more than 6000 periods.
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6. Discussion

What has been presented here is a theory of the emergence of bargaining solutions as

social norms that rests on behavior and not on the properties of the solutions themselves.

Societal interactions take individual behavior as an input and give a social norm, or to put

it another way, a social choice, as output. Thus, if we think of a society as similar to an

organism with agency, we can regard the traditional, normative approaches to social choice

as specifying behavioral rules for society itself, rather than for the individuals within society.

As such, the results of the current paper and the rest of the Evolutionary Nash Program can

be understood as a reconciliation of micro and macro behavioral theories.

But what of decision making that does not occur at the individual level, nor at the

societal level? What if small groups exhibit collective agency and collaboratively adjust

their behavior? In recent years there has been considerable work on collective agency in

behavioral rules and its effect on social norms (Newton, 2012b,a; Newton and Angus, 2015;

Newton and Sawa, 2015; Angus and Newton, 2015; Sawa, 2014; Nax and Pradelski, 2014;

Klaus and Newton, 2016). In particular, Newton (2012a) features a result directly related

to the current paper: if collective agency is added to the model of Young (1998a), then the

Nash bargaining solution is the long run norm instead of the Kalai-Smorodinsky solution. So

it is clear that agency can affect norms. It seems intuitive that the opposite should also be

true: the presence of well developed norms in a group should help members of the group to

face new problems, take decisions and adjust their behavior as if they were of one mind. The

modeling of two way influence between norms and agency is an avenue for future research.
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Appendix A. Proofs

Denote by P η(x, y) the transition probability from state x to state y. Define the resistance

of such a transition, V (x, y), as

V (x, y) := lim
η→0
−η lnP η(x, y) (A.1)

where V is defined over the set of all x, y ∈ Ξ such that P η̂(x, y) > 0 for some η̂ > 0 (see

Beggs, 2005; Sandholm, 2010).

For uniform errors, V (x, y) equals the number of agents who switch to anything other

than a best response.

V (x, y) =
∑

γ∈{α,β}

∑
l /∈arg maxl̃ πγ(l̃,x)

max{yγ(l)− xγ(l), 0}. (A.2)

For the logit choice rule, V (x, y) equals the best response payoff minus the payoff from

the chosen strategy, summed over all updating agents.

V (x, y) =
∑

γ∈{α,β}

∑
l∈I

max{yγ(l)− xγ(l), 0}
(

max
l̃
πγ(l̃, x)− πγ(l, x)

)
. (A.3)

Lemma 1. Each process, uniform or logit, unintentional or intentional, for given η > 0,
has a unique stationary distribution, which we denote µη.

Proof. Note that for all x ∈ Ξ, n ∈ ∆α(x), so for all of our processes, from any x ∈ Ξ,

we have that P η(x, y) > 0 for some y such that yα(n) = N . From y, n is a best response

for any β-agent, so P η(y, En) > 0. Therefore, from any x ∈ Ξ, with positive probability En

will be reached within two periods. As the state space is finite, standard results in Markov

chain theory7 imply that for all η > 0, P η has a unique recurrent class and µη exists and is

unique.

In a similar way that V (·, ·) measures the rarity of single steps in the process, we will use

a concept, overall cost, that measures the rarity of a transition between any two states over

any number of periods. Let P(x, x′) be the set of finite sequences of states {x1, x2, . . . , xT}
such that x1 = x, xT = x′ and for some η̂ > 0, P η̂(xτ , xτ+1) > 0, τ = 1, . . . , T − 1.

7See, for example, “Probability” by Shiryaev (1995, p.586, Theorem 4).
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Definition 2. The overall cost of a transition between x, x′ ∈ Ξ is:

c(x, x′) := min
{x1,...,xT }∈P(x,x′)

T−1∑
τ=1

V (xτ , xτ+1). (A.4)

If there is no positive probability path between x and x′ then let c(x, x′) = ∞. We shall

be interested in the cost of transitions between conventions. In the current setting, this

quantity is always finite. Denote the overall cost functions for the uniform-unintentional,

logit-unintentional, uniform-intentional and logit-intentional processes by cU , cL, cUI , cLI

respectively.

Lemma 2. For c ∈ {cU , cL, cUI , cLI}, i ∈ L, let

Fi :=

{
x ∈ Ξ : For some γ ∈ {α, β}, {i} 6= arg max

j∈I
πγ(j, x)

}
.

Then, to calculate minx∈Fi c(Ei, x) via the minimization in (A.4) it suffices to consider
{x1, . . . , xT} ∈ P(Ei, x) such that, for τ < T , xτ and xτ+1 are identical except that for
some j ∈ I, γ ∈ {α, β}, xτ+1

γ (i) = xτγ(i)− 1 and xτ+1
γ (j) = xτγ(j) + 1.

Proof. Let {x1, . . . , xT}, x1 = Ei, x
T ∈ Fi, be such that

min
x∈Fi

c(Ei, x) =
T−1∑
τ=1

V (xτ , xτ+1). (A.5)

As V (., .) ≥ 0, we can, without loss of generality, assume that xt /∈ Fi for t < T . For

t = 1 . . . , T − 1, for all γ ∈ {α, β}, define

y1
γ = x1

γ,

yt+1
γ (j) = ytγ(j) + max{xt+1

γ (j)− xtγ(j), 0} for j 6= i,

yt+1
γ (i) = N −

∑
j 6=i

yt+1
γ (j).

That is, {y1, . . . , yT} differs from {x1, . . . , xT} only in that all transitions to any j ∈ I at

t+ 1 are now by agents who played i at t.

Let t′ be the smallest t such that yt ∈ Fi. t′ ≤ T as yTγ (i) ≤ xTγ (i), yTγ (j) ≥ xTγ (j) for j 6= i,

xT ∈ Fi implies yT ∈ Fi. By (A.2) or (A.3), i /∈ Fi implies V (yt, yt+1) ≤ V (xt, xt+1). There-

fore, if t′ < T , then c(y1 = x1, yt
′
) ≤

∑t′−1
t=1 V (yt, yt+1) ≤

∑t′−1
t=1 V (xt, xt+1) <

∑T−1
t=1 V (xt, xt+1),

contradicting (A.5). So t′ = T and for all t < T , we have yt /∈ Fi and

V (yt, yt+1) ≤ V (xt, xt+1). (A.6)
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Now, if
∑

γ y
t+1
γ (i) <

∑
γ y

t
γ(i) − 1, then take some j, γ such that yt+1

γ (j) > ytγ(j) and

define yt+ to be identical to yt except that yt+γ (i) = ytγ(i)− 1 and yt+γ (j) = ytγ(j) + 1. Then,

by (A.2) or (A.3) we have

V (yt, yt+) + V (yt+, yt+1) ≤ V (yt, yt+1). (A.7)

Now replace {y1, . . . , yt, yt+1, . . . , yT} with {y1, . . . , yt, yt+, yt+1, . . . , yT} and iterate this pro-

cedure until we obtain {z1, . . . , zT
′} such that z1 = y1, zT

′
= yT , and either zt+1 = zt or∑

γ z
t+1
γ (i) =

∑
γ z

t
γ(i)−1 for t = 1, . . . , T ′−1. If zt+1 = zt, then V (zt, zt+1) = 0, so we omit

such transitions and renumber our sequence {z1, . . . , zT̃}, which now satisfies the conditions

in the statement of the lemma. Now,

min
x∈Fi

c(Ei, x) ≤︸︷︷︸
by defn

T̃−1∑
τ=1

V (zτ , zτ+1) ≤︸︷︷︸
by iterating (A.7)

T−1∑
τ=1

V (yτ , yτ+1)

≤︸︷︷︸
by (A.6)

T−1∑
τ=1

V (xτ , xτ+1) =︸︷︷︸
by (A.5)

min
x∈Fi

c(Ei, x).

which completes the proof.

Lemma 3. For i ∈ L,

cU(Ei, Ej) = min

{⌈
N

f(δi)

f(δi) + s̄β

⌉
,

⌈
N

δi

δi+ s̄α

⌉}
for all j 6= i, (A.8)

cL(Ei, Ej) ≈ min

{
δi

⌈
N

f(δi)

f(δi) + s̄β

⌉
, f(δi)

⌈
N

δi

δi+ s̄α

⌉}
for all j 6= i, (A.9)

min
j 6=i

cUI(Ei, Ej) = min

{⌈
N

f(δi)

f(δ(i+ 1)) + f(δi)

⌉
,

⌈
N

i

2i− 1

⌉}
, (A.10)

min
j 6=i

cLI(Ei, Ej) ≈ min

{
δi

⌈
N

f(δi)

f(δ(i+ 1)) + f(δi)

⌉
, f(δi)

⌈
N

i

2i− 1

⌉}
. (A.11)

where a ≈ b denotes |a− b| ≤ max{s̄α, s̄β}.

Proof. Let ξγi be the lowest number of errors by a γ-agent, γ ∈ {α, β}, on any transition

path from Ei, i ∈ L, to some Ej, j ∈ I, j 6= i. At some point on any such path, some j 6= i

must become a best response. Therefore,

ξαi max
j∈Cαi

πβ(j, j) ≥ (N − ξαi )πβ(i, i) and ξβi max
j∈Cβi

πα(j, j) ≥ (N − ξβi )πα(i, i),

where Cγ
i = I for unintentional processes and Cγ

i = ∆γ(Ei) \ {i} for intentional processes.
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It follows that ξαi is attained when α-agents make errors and play k ∈ arg maxj∈Cαi πβ(j, j),

and ξβi is attained when β-agents make errors and play k ∈ arg maxj∈Cβi
πα(j, j).

ξαi = min
j∈Cαi

⌈
N

πβ(i, i)

πβ(i, i) + πβ(j, j)

⌉
and ξβi = min

j∈Cβi

⌈
N

πα(i, i)

πα(i, i) + πα(j, j)

⌉
.

(A.12)

Now, πα(i, i) = δi and πβ(i, i) = f(δi). For unintentional processes

max
j∈Cαi

πβ(j, j) = s̄β and max
j∈Cβi

πα(j, j) = s̄α, (A.13)

and for intentional processes

max
j∈Cαi

πβ(j, j) = f(δ(i+ 1)) and max
j∈Cβi

πα(j, j) = δ (i− 1). (A.14)

For uniform errors, each error adds 1 to the cost of the transition, therefore the least cost

transition from Ei, i ∈ L, to some Ej, j ∈ I, j 6= i, is one involving the fewest errors. The

cost of such a transition is then min{ξαi , ξ
β
i }, which by (A.12) and (A.13), equals the RHS

of (A.8) for unintentional errors, and by (A.12) and (A.14), equals the RHS of (A.10) for

intentional errors.

For logit errors, as each error is weighted by the expected payoff loss, the lowest cost

from the transitions involving the fewest errors is min{πα(i, i) ξαi , πβ(i, i) ξβi }. There may

exist lower cost transitions, but as Lemma 2 tells us we can restrict attention to paths in

which one agent switches at a time, we can invoke Theorem 1 of Hwang and Newton (2016)

and, for intentional processes, Theorem 1 from Hwang and Newton (2014), to give

min
j 6=i

c(Ei, Ej) ≥ min{πα(i, i)(ξαi − 1), πβ(i, i)(ξβi − 1)},

so we have the RHS of (A.9) and (A.11).

Finally, note that for unintentional errors, by (A.13), lowest cost transitions out of Ei

involve extreme errors in which either α-agents switch to 0 until 0 is a best response for

β-agents, or β-agents switch to n until n is a best response for α-agents. Consider α-agents

making errors until 0 is a best response for β-agents. It is then possible that all β-agents

update their strategy to 0, to reach a state x such that xβ(0) = N . From such a state, any

strategy is a best response for α-agents, so it is possible that they all choose some arbitrary

strategy k, following which k becomes a best response for β-agents who can in turn switch

to k so that Ek is reached. We see that any least cost exit path from Ei can reach Ek for
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arbitrary k without further mistakes. That is, c(Ei, Ek) = minj 6=i c(Ei, Ej) for all k 6= i.

The next step is to characterize the stochastically stable states of our model for given δ

and large population size.

Definition 3. The following expressions are the limits of 1/N multiplied by (A.8), (A.9),
(A.10), (A.11) as N →∞, written as a function of t = δi.

ϕUδ (t) := min

{
f(t)

f(t) + s̄β
,

t

t+ s̄α

}
,

ϕLδ (t) := min

{
t

f(t)

f(t) + s̄β
, f(t)

t

t+ s̄α

}
,

ϕUIδ (t) := min

{
f(t)

f(t+ δ) + f(t)
,

t

2t− δ

}
,

ϕLIδ (t) := min

{
t

f(t)

f(t+ δ) + f(t)
, f(t)

t

2t− δ

}
.

Lemma 4. For c ∈ {cUI , cLI} and corresponding φδ ∈ {φUIδ , φLIδ }, let i ∈ arg maxj∈L ϕδ(jδ).
Then

φδ(jδ) = lim
N→∞

1

N
c(Ej, Ej+1) for j < i,

φδ(jδ) = lim
N→∞

1

N
c(Ej, Ej−1) for j > i.

Proof. We can write φδ(t) = min{a(t), b(t)}. As a(t) is increasing in t, b(t) is decreasing in

t, a(iδ) ≤ b(iδ) implies

a(jδ) < b(jδ) for j < i,

a(jδ) > b(jδ) for j > i. [otherwise φδ(jδ) > φδ(iδ), contradicting i ∈ arg max
j∈L

ϕδ(jδ)]

If a(iδ) > b(iδ), a similar argument implies the same conclusion. To conclude, note that by

the proof of Lemma 3,

a(jδ) < b(jδ) =⇒ lim
N→∞

1

N
c(Ej, Ej+1) = lim

N→∞

1

N
min
k 6=j

c(Ej, Ek) = φδ(jδ),

a(jδ) > b(jδ) =⇒ lim
N→∞

1

N
c(Ej, Ej−1) = lim

N→∞

1

N
min
k 6=j

c(Ej, Ek) = φδ(jδ).

Definition 4. An i-graph is a directed graph on L such that every vertex except for i has
exactly one exiting edge and the graph has no cycles. Let G(i) denote the set of i-graphs. For
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a graph g, let (j → k) ∈ g denote an edge from j to k in g. Define stochastic potential:

SP (i) := min
g∈G(i)

∑
(j→k)∈g

c(Ej, Ek). (A.15)

We know from Freidlin and Wentzell (1984, chap.6), Young (1993a) that:

µ(Ei) > 0⇔ i ∈ arg min
j∈L

SP (j).

Lemma 5. For c ∈ {cU , cL, cUI , cLI} and corresponding φδ ∈ {φUδ , φLδ , φUIδ , φLIδ }, there exists
Nδ such that for all N ≥ Nδ, µ(Ei) > 0 =⇒ i ∈ arg maxj∈L ϕδ(jδ)

Proof. Let l /∈ arg maxj∈L ϕδ(jδ) and let i ∈ arg maxj∈L ϕδ(jδ). Consider g ∈ G(i). For

c = cU , cL, let g = {j → i : j ∈ L, j 6= i}. For c = cUI , cLI , let g = {j → j + 1 :

j ∈ L, j < i} ∪ {j → j − 1 : j ∈ L, j > i}. Note that (j → k) ∈ g correspond to

c(Ej, Ek) that solve mink c(Ej, Ek). For c = cUI , cLI , this follows from the proof of Lemma

3, i ∈ arg maxj∈L ϕδ(jδ), and the fact that one term inside the minimization defining the

corresponding ϕδ(t) is increasing t, the other term decreasing in t. Thus (j → k) ∈ g implies

that limN→∞
1
N
c(Ej, Ek) = ϕδ(jδ). We have

lim
N→∞

1

N
SP (l) ≥︸︷︷︸

by defn

lim
N→∞

1

N

∑
j 6=l
j∈L

min
k 6=j
k∈L

c(Ej, Ek) =︸︷︷︸
by Lemma 3 and
1
N

max{s̄α,s̄β}→0
as N→∞

∑
j 6=l
j∈L

ϕδ(jδ)

>︸︷︷︸
by ϕδ(lδ)<ϕδ(iδ)

∑
j 6=i
j∈L

ϕδ(jδ) =︸︷︷︸
byLemmas3,4

lim
N→∞

1

N

∑
(j→k)∈g

c(Ej, Ek) ≥︸︷︷︸
by Lemma 3 and
1
N

max{s̄α,s̄β}→0
as N→∞

lim
N→∞

1

N
SP (i).

By (A.15), this shows that for large enough N , if l ∈ L does not maximize ϕδ(·δ) then

µ(El) = 0. So µ(Ei) > 0 must imply that i ∈ arg maxj∈L ϕδ(jδ).

This characterizes the stochastically stable states for large N . The principle theorem of

the paper approximates these states for small δ, linking them to bargaining solutions. To

prove the Theorem we use the following lemma.

Lemma 6. Suppose ϕ is a continuous function which admits a unique maximum. Sup-
pose ϕδ such that ϕδ converges uniformly to ϕ as δ → 0. Let t∗ ∈ arg maxϕ(t) and
i∗ ∈ arg maxi ϕδ(iδ). Then for all ς > 0, there exists δ̄ > 0 such that for all δ < δ̄, we
have |i∗δ − t∗| < ς.

Proof. By the definitions of t∗ ∈ arg maxt ϕ(t) and i∗ ∈ arg maxi ϕδ(iδ), we have ϕ(t∗) ≥
ϕ(i∗δ) and ϕδ(i

∗δ) ≥ ϕδ(t). Let ς > 0. By uniform convergence we can choose δ < δ̄, such
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that |ϕδ(t∗)− ϕ(t∗)| < ς and |ϕδ(i∗δ)− ϕ(i∗δ)| < ς. For δ < δ̄, we have ϕ(i∗δ) ≤ ϕ(t∗) ≤
ϕδ(t

∗) + ς ≤ ϕδ(i
∗δ) + ς < ϕ(i∗δ) + 2ς. Thus we have that

For all ς̃ > 0, there exists δ̄ such that for all δ < δ̄,we have |ϕ(t∗)−ϕ(i∗δ)| < ς̃. (A.16)

Without loss of generality we suppose that i∗δ < t∗ and let ς > 0 be given. Then for ς > 0

we can choose ρ̄ such that for all ρ < ρ̄

ϕ(t∗)− ρ < y < ϕ(t∗) implies |ϕ−1(y)− t∗| < ς, (A.17)

where ϕ−1 is the inverse function for ϕ defined in a neighborhood of t∗ except t∗. Now let

ς > 0. Choose ρ̄ satisfying (A.17) first. Then for ς̃ = ρ < ρ̄, choose δ̄ satisfying (A.16).

Then for ρ and for δ < δ̄, we have |ϕ(i∗δ)− ϕ(t∗)| < ρ. Also since ρ < ρ̄, by (A.17) we have

|i∗δ− t∗| < ς. Thus we show that for all ς > 0, there exists δ̄ > 0 such that for all δ < δ̄, we

have |i∗δ − t∗| < ς.

Proof of Theorem 1.

Taking the limit of ϕUδ (t) and ϕLδ (t) as δ → 0 gives uniform convergence to

ϕU(t) := min

{
f(t)

f(t) + s̄β
,

t

t+ s̄α

}
, (A.18)

ϕL(t) := min

{
t

f(t)

f(t) + s̄β
, f(t)

t

t+ s̄α

}
, (A.19)

respectively. These functions are maximized at tKS, tL, respectively. Lemmas 5 and 6 then

complete the proof for the cases of uniform-unintentional and logit-unintentional errors.

For the case of logit-intentional errors, ϕLIδ (t) takes the form min{a(t), b(t)}, with a(t) =

t f(t)
f(t+δ)+f(t)

and b(t) = f(t) t
2t−δ . Continuity of f(·) implies that there exist ς > 0, δ̂ > 0 such

that for all δ < δ̂, a(t) < b(t) for all δ ≤ t < ς, and a(t) > b(t) for all s̄α − δ ≥ t > s̄α − ς.
Therefore, the following function equals ϕLIδ (t) at all t = δi, i = 1, . . . , n− 1.

ϕ̂LIδ (t) =


a(t) if t < ς.

min{a(t), b(t)} if ς ≤ t ≤ s̄α − ς.
b(t) if t > s̄α − ς.

As δ → 0, ϕ̂LIδ converges uniformly to

ϕ̂LI(t) := min

{
t

2
,
f(t)

2

}
.
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This expression is maximized at tE. Lemmas 5 and 6 then complete the proof for logit-

intentional errors.

For the case of uniform-intentional errors, we cannot apply Lemma 6, since the ϕUIδ (t)

does not converge to a function with a unique maximum as δ → 0. However, in the mini-

mization that defines ϕUIδ (t), one of the terms is increasing in t, the other is decreasing in t,

and they intersect at a unique t̃. Therefore, for small δ, i∗ ∈ arg maxi∈L ϕ
UI
δ (iδ) is close to t̃,

which is given by

t̃

2t̃− δ
=

f(t̃)

f(t̃+ δ) + f(t̃)
⇔ t̃

f(t̃+ δ)− f(t̃)

δ
+ f(t̃) = 0,

which approaches the first order condition for tNB as δ → 0. Hence δi∗ → tNB (See detailed

argument in Naidu, Hwang and Bowles, 2010).

Appendix B. Experiments - instructions and interface

Appendix B.1. Decision screen faced by subjects

Here we give the decision screen faced by subjects from the second round onwards. Po-

sition 1 corresponds to the population of α-subjects and Position 2 corresponds to the

population of β-subjects. Subjects were informed of their own payoffs from successful coor-

dination and the proportions of subjects in the other position who played each strategy in

the preceding round.

Figure B.6: Screen faced by subjects in Position 1 (α-subjects).
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Appendix B.2. Instructions given to participants

INSTRUCTIONS

Welcome to the study. In the following two hours, you will participate in 200 rounds of

strategic decision making. Please read these instructions carefully; the cash payment you

will receive at the end of the study depends on how well you perform so it is important that

you understand the instructions. If you have a question at any point, please raise your hand

and wait for one of us to come over. We ask that you turn off your mobile phone and any

other electronic devices. Communication of any kind with other participants is not allowed.

Your Cash Payment

For each participant, the experimenter randomly and independently selects 3 rounds to

calculate the cash payment. (So it is in your best interest to take each round seriously.)

Each round has an equal chance to be selected as a payment round for you. You will not be

told which rounds are chosen to be the payment rounds for you until the end of the session.

Your total cash payment at the end of the experiment will be the average earnings in the

three selected rounds (translated into HKD as the exchange rate of 1 Token = 1 HKD) plus

a 30 HKD show-up fee.

Your total cash payment = HK$ (The average of earnings in the 3 selected rounds) + HK$ 30

Your Role and Decision Group

You are one of 20 participants in today’s session. At the beginning of the experiment,

one half of the participants will be randomly assigned to be in Position 1 and the other half

to be in Position 2. Your position will remain fixed throughout the experiment. In each

round, all individuals are randomly paired so that each pair comprises one Position 1 player

and one Position 2 player. Thus, in a round you will have an equal, 1 in 10 chance of being

paired with any given participant in the other position. You will not be told the identity

of the participant you are paired with in any round, nor will that participant be told your

identity—even after the end of the experiment. Participants will be randomly re-paired after

each round to form new pairs.

Your Decision in Each Round

In each round, you will play a 2-player game with the participant you are paired with.

For each player, there are five available actions, labeled A, B, C, D, and E. You and the

participant you are paired with simultaneously choose an action, and only if the choices
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made by you and the other participant are the same, may you be able to get a

positive earning in the round.

Figure 1: Your Earnings

In words this says,

1. When you are a Position 1 player , if you and the other participant you are paired with

have different actions, you each get 0. If you and the other player in your pair both

choose

(a) Action ‘A’, you get a1 and the other gets a2,

(b) Action ‘B’, you get b1 and the other gets b2,

(c) Action ‘C’, you get c1 and the other gets c2,

(d) Action ‘D’, you get d1 and the other gets d2, and

(e) Action ‘E’, you get e1 and the other gets e2.

2. When you are a Position 2 player, if you and the other participant you are paired with

have different actions, you each get 0. If you and the other player in your pair both

choose

(a) Action ‘A’, you get a2 and the other gets a1,

(b) Action ‘B’, you get b2 and the other gets b1,

(c) Action ‘C’, you get c2 and the other gets c1,

(d) Action ‘D’, you get d2 and the other gets d1, and

(e) Action ‘E’, you get e2 and the other gets e1.

You are prompted to choose an action by clicking one of the five buttons A, B, C, D,

and E at the bottom of your screen. Your decision in the round is completed.
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Do You Know Your Payoffs?

At the beginning of the first round, you will be assigned to a position. Then the payoff

values, a1, b1, c1, d1, and e1, are revealed to the position 1 players and the payoff values, a2,

b2, c2, d2, and e2, are revealed to the position 2 players. However, you will not be told the

payoff values for the players in the other position, even after the end of the experiment.

An Opportunity to Change Your Action

In the first round, every participant is given the opportunity to choose an action out

of the five available ones. In any round from the second round, the opportunity to change

an action is given to each participant independently with 90% chance only. That is, with

10% chance, any given participant is not allowed to change his/her action. In case that the

opportunity to change your action is not given, you will see the following message in your

decision screen:

“In this round, you are not given the opportunity to change your action choice.”

and will be assigned the same action as in the previous round. You will not be told whether

the opportunity to change an action is given to the participant you are paired with, nor will

the participant you are paired with be told whether such an opportunity is given to you.

Information Feedback

In each round, at the right-bottom corner of your screen, you will see the summary of the

previous round. First, you will see your action choice and your earning from the

previous round. Second, you will see the bar chart that reports how many people among the

10 participants in the other position chose each action in the previous round.

Rundown of the Study

1. At the beginning of the first round, you will be assigned to a position, and you will be

shown the payoff values for yourself. In the main panel of your decision screen, you

will be prompted to enter your choice of action. You must choose one of five actions

A, B, C, D, and E within 30 seconds. If you do not choose an action, one action will

be randomly assigned to you.

2. The first round is over after everybody has chosen an action. The screen will then

show you a summary: (a) your choice of action in the first round, (b) your earning in

the first round, and (c) how many players in the other position had each action in the

first round.
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3. You will be prompted to enter your choice of action for the second round, if you have

the opportunity to change your action. The game does not change, so as before you

must choose one of five actions.

All future rounds are identical to the first round except for two important difference.

(a) The first difference concerns how much time you have to choose an action. In

rounds 2−10, you have 20 seconds to make a decision. If you do not make a deci-

sion within the 20 second window, then you will be assigned whatever action you used in

the previous round. For rounds 11 − 200, you have only 10 seconds in which to

make a decision. Again, if you fail to choose an action in this timeframe, you will

be assigned the same action as in the previous round.

(b) The second difference concerns whether the opportunity to change your action is

given with 100% chance (round 1) or with 90% chance (rounds 2− 200).

Administration

Your decisions as well as your cash payment will be kept completely confidential. Re-

member that you have to make your decisions entirely on your own; do not discuss your

decisions with any other participants.

Upon completion of the study, you will receive your cash payment. You will be asked to

sign your name to acknowledge your receipt of the payment. You are then free to leave.

If you have any questions, please raise your hand now. We will answer questions individ-

ually. If there are no questions, we will begin with the study.

Quiz

1. Suppose that you are a Position 1 player, and choose action A. It turns out that the participant you

are paired with chooses action B. What is your earning?

2. Suppose that you are a Position 1 player, and choose action B. It turns out that the participant you

are paired with chooses action B. What is your earning?
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