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Abstract

We formulate a flexible generalised hyperbolic (GH) option pricing model, which unlike the

version proposed by Eberlein and Prause (2002), has all four of its parameters free to be

estimated. We also present six three-parameter special cases: a variance gamma (VG), t,

hyperbolic, normal inverse Gaussian, reciprocal hyperbolic and normal reciprocal inverse

Gaussian option pricing model. Using S&P 500 Index options, we compare the flexible GH,

VG, t and Black-Scholes models. The flexible GH model offers the best out-of-sample pricing

overall, while the t special case outperforms the VG for both in-sample and out-of-sample

pricing. All three models also improve the orthogonality of implied volatility compared to

the Black-Scholes model.

Key words: generalised hyperbolic, t distribution, variance gamma, skewness, Lévy pro-

cesses

JEL classification: C58, G13

Empirical option prices indicate that the likelihood of extreme logarithmic stock returns is higher than

that implied by the Black-Scholes model. Option prices also reveal that market participants pay more to

protect themselves from losses than to pursue gains of equivalent magnitude. The statistical implication

is that the risk-neutral distribution of log-returns exhibits excess kurtosis and negative skewness (Madan

and Milne, 1991; Eberlein and Keller, 1995). These two digressions from the Black-Scholes’ normality

assumption (Black and Scholes, 1973; Merton, 1973) are in part responsible for its poor empirical pricing

results. To combat this deficiency, the generalised hyperbolic (GH) distribution and its six special cases:

the variance gamma (VG), t, hyperbolic, normal inverse Gaussian, reciprocal hyperbolic and normal

reciprocal inverse Gaussian distributions, can be used to improve option pricing as they accommodate

skewness and thicker, semi-heavy tails (Barndorff-Nielsen, 1977).

Eberlein and Prause (2002) proposed a version of a GH option pricing model. However, the acces-
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sibility of the model is encumbered by estimation difficulties as one of its four parameters, namely the

index parameter, is required to be fixed (Prause, 1999)1. Eberlein and Prause assumed that the under-

lying asset’s returns are independent over time. On the other hand, Finlay and Seneta (2012) have also

proposed a GH option pricing model that allows for short and long range dependence2 in squared log-

returns. Notwithstanding, this dependent model remains yet to be empirically tested in the literature. In

this paper, we focus on addressing the challenges faced by GH option pricing in the independent setting.

Our contribution to this field is an unrestricted form of the GH model, the flexible GH option pricing

model, where all four parameters are free and can conveniently be estimated. In regard to our flexible

GH model’s special cases, we present six three-parameter option pricing models. With the exception of

the VG option pricing model, which was proposed by Madan, Carr, and Chang (1998), the remaining

five models’ parameterisations are innovations of this paper.

To construct the flexible GH option pricing model and its special cases, we generalise the Black-

Scholes model through the method of subordination (Clark, 1973). The Black-Scholes model’s Brownian

motion with drift for log-returns is subordinated by a stochastic time-change process. The stochastic

time-change follows a generalised inverse Gaussian (GIG) or a special case of the GIG process (Barndorff-

Nielsen and Halgreen, 1977). The resulting family of flexible GH processes are pure-jump, infinite activity

processes (Barndorff-Nielsen, Mikosch, and Resnick, 2001)3. The infinite activity property allows a GH

process to move an unlimited number of jumps within an infinitesimally small interval, assisting the

model to capture both discrete and continuous asset price movements (Daal and Madan, 2005). The

class of flexible GH models also have stochastic drifts and stochastic variances. Though, unlike other

stochastic volatility models such as Heston’s model (1993), there are no mean-reversion or other time-

series dynamics ascribed to the stochastic variances.

In this paper, we also conduct an empirical comparison of the flexible GH, VG, t and Black-Scholes

option pricing models using S&P 500 Index options. Of the six flexible GH special cases, we examine

the VG and t models because they were not studied by Eberlein and Prause (2002), who instead focused

on hyperbolic and normal inverse Gaussian subclasses of their GH option pricing model. Furthermore,

a direct comparison of the VG and t models is theoretically motivated since they are complementary

special cases of the flexible GH model, under certain conditions elaborated on in Subsection 2.2. In the

empirical analyses therefore, we not only monitor which of the four models is superior, but also lend

1Prior to Eberlein and Prause’s 2002 paper, details about the GH option pricing model and its estimation can be found
in Prause (1999), chapter 2.

2The option pricing models for assets with long range dependence were pioneered by Heyde (1999), and Heyde and Liu
(2001). Special cases of the GH distribution have since been employed in short and long range dependence models, such
as the t distribution by Heyde and Leonenko (2005), Finlay and Seneta (2006), and Leonenko, Petherick, and Sikorskii
(2011), the VG distribution by Finlay and Seneta (2006), and Leonenko, Petherick, and Sikorskii (2012b), and the normal
inverse Gaussian distribution by Leonenko, Petherick, and Sikorskii (2012b,a).

3The pure-jump and infinite activity property of the GH process and special cases is a distinguishing property from
Heston’s model (1993), the Black-Scholes model and from other seminal models, such as Merton’s jump-diffusion model
(1976), Bates’ model (1996), and Pan’s model (2002), as noted by Carr and Wu (2004). As a purely discontinuous process,
the GH process is also different from the GH diffusion process of Bibby and Sørensen (1997) and Rydberg (1999).
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particular attention to the contest between the VG and t special cases.

Our empirical study assesses the option pricing models based on three yardsticks: in-sample fit, the

models’ misspecifications, and out-of-sample pricing error. We analyse the models’ pricing performances

for options of all strikes and maturities, in addition to scrutinising their disaggregated pricing results.

That is, we investigate the fit of option prices of different strike-to-spot price ratios (moneyness) and

different times-to-maturity. First for in-sample fitting, we find that the t model performs as well as

the flexible GH model overall. The difference between the two models is encapsulated by the flexible

GH model fitting at-the-money options better, and the t model fitting the left tail of the log-return

distribution better, as evinced by the t model’s superior fit of in-the-money put options. Compared

to the VG model, the t model outperforms for all option types. The t model’s superiority over the

VG model is further verifiable by the flexible GH model’s empirical parameter estimates. The flexible

GH model more often estimates parameter values that reduce it to the t special case than to the VG

special case. Secondly, an orthogonality test of implied volatility to moneyness, time-to-maturity and the

interest rate demonstrates that all three models reduce the misspecification inherent in the Black-Scholes

model (Rubinstein, 1985). Finally, for out-of-sample pricing, the flexible GH model achieves the lowest

pricing error, followed by the t, VG and then the Black-Scholes model. Between the VG and t models,

the t model is superior for the majority of moneyness and time-to-maturity combinations.

Our paper is structured as follows. Section 1 begins with a description of a subordinated process and

presents a corresponding option pricing framework. In Section 2, we formulate the flexible GH option

pricing model and its six special cases, including the two limiting cases. Section 3 comprises our empirical

study. The data description, parameter estimates, in-sample fit, orthogonality test and out-of-sample

pricing results are provided therein. The conclusion is presented in Section 4.

1 Subordinated Option Pricing Models

In this section, we describe the methodology of constructing an option pricing framework for subordinated

stochastic processes. Suppose that logarithmic stock returns, in keeping with the Black-Scholes model,

follow a Brownian motion with drift but that as a generalisation of the Black-Scholes model, the log-

return process moves at uneven, randomised time-intervals. Such a log-return process is known as a

subordinated stochastic process in that it is subordinated to the Brownian motion by the randomised

time-change process (Bochner, 1955; Feller, 1966). The concept of randomised time may be interpreted as

the passage of intrinsic or economic, rather than physical time. Added as a feature in financial modelling,

it captures for instance, the empirical market characteristics that information ‘arrives’ at the market at

uneven and unpredictable time intervals, or that trading volume fluctuates randomly throughout the

trading day (Hurst, Platen, and Rachev, 1997).
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We may denote the stochastic intrinsic time process with gt. Let gt be a Lévy process (Lévy, 1937),

constructed by summing stationary and independent increments, g1, where g1 = gt+1− gt for t ≥ 0. The

intrinsic time increment over a unit of physical time, g1, is required to follow a non-negative, infinitely

divisible distribution with a unit expectation, E[g1] = 1, for the intrinsic time interpretation to hold.

The subordinated stochastic process, Xt, is then formed by introducing a scaled Wiener process, σW (·),

and drift, θ, onto the intrinsic time scale of gt (Clark, 1973) as such:

Xt = θgt + σW (gt), (1)

where σ > 0 and W (·) is independent from gt. The increment, X1 = Xt+1 − Xt, will follow the

normal mean-variance mixture distribution that results from using the distribution of g1 as the mixing

density4 (Barndorff-Nielsen, Kent, and Sørensen, 1982). As a normal mixture, the distribution of X1 will

be leptokurtic. That is, it will have heavier tails and a higher peak than the normal distribution (Hurst,

Platen, and Rachev, 1997). The distribution will also be skewed, due to the mixing in the mean through

θ. The distribution of X1’s infinite divisibility follows from the infinite divisibility of g1 (Barndorff-Nielsen

and Halgreen, 1977), and consequently Xt will be a Lévy process.

The subordinated process, Xt, is adopted into stock price modelling as follows:

St = S0 exp{(r − q)t+Xt + ωt}, (2)

where St is the spot stock price at (physical) time t, r is the risk-free rate and q is the dividend yield.

The risk-neutral drift adjustment, ω, is equal to − lnφX1(−i), where φX1(u) denotes the characteristic

function of X1. This result for ω is derived in Appendix A, Equation (A.6).

The following subordinated option pricing framework allows for computation of a European call or

put option price using the characteristic function of g1, φg1(u):

Ct = Ste
−qτΠ1 −Ke−rτΠ2 (3)

Pt = Ke−rτ (1−Π2)− Ste−qτ (1−Π1)

Π1 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iw log(K)φlogSt(w − i)

iwφlogSt(−i)

)
dw

Π2 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iw log(K)φlogSt(w)

iw

)
dw

φlogSt(u) = S0 exp {iu [r − q − lnφX1(−i)] t} φX1(u)t

φX1
(u) = φg1

(
uθ +

iσ2u2

2

)
,

4Computation of the option price does not require a closed form of the density function of Xt. As proven in Appendix A,
whereXt is a Lévy process, it is sufficient to use the characteristic function. Hence, there is no requirement that distributions
of g1 or X1 be closed in convolution (Hurst, Platen, and Rachev, 1997).
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where Ct and Pt are the call and put option price at time t, τ = T − t is the time-to-maturity, K is

the strike price, and g1 is the intrinsic time-change over a unit of physical time. The derivation of this

result can be found in Appendix A. Existing models that fit within the broader class of subordinated

option pricing models, for independent asset returns, include the VG option pricing model, where g1

follows a gamma distribution (Madan, Carr, and Chang, 1998), and the log-stable option pricing model,

under which g1 follows an α
2 -stable distribution (Hurst, Platen, and Rachev, 1999). The hyperbolic

model of Eberlein, Keller, and Prause (1998) and the GH model of Eberlein and Prause (2002) are not

parameterised as subordinated models since under these models, g1 does not have a unit expectation.

2 The Flexible GH Option Pricing Model and Its Special Cases

2.1 The Flexible GH Model

In this section, we parameterise the GH process as a subordinated process to accord with the subordinated

option pricing framework of Section 1. It is the subordinated parameterisation that allows all four of

the flexible GH option pricing model’s parameters to be estimated. To characterise Xt as a GH process,

let g1 follow a generalised inverse Gaussian (GIG) distribution with parameters p (any real number),

a = γ2 ≥ 0 and b = δ2 ≥ 0. Let us define the parameter ζ = δγ. Transforming the parameter domains

given in Barndorff-Nielsen and Halgreen (1977), the parameters, p and ζ must satisfy either of the

following conditions for E[g1] and in turn for E[X1] to be well defined5:

(i) ζ > 0 if − 1 ≤ p ≤ 0, (4)

(ii) ζ ≥ 0 otherwise.

The GIG distribution and its subclasses are infinitely divisible and non-negative (Barndorff-Nielsen and

Halgreen, 1977). To impose the unit expectation condition on g1, let

γ2 = ζ
Kp+1(ζ)

Kp(ζ)
, (5)

where Kh(·) is the modified Bessel function of the third kind with index h (Jørgensen, 1982). This result

follows from E[g1] = ζ
γ2

Kp+1(ζ)
Kp(ζ) = 1. The flexible GH model’s four parameters are therefore a volatility

parameter, σ, a skewness parameter, θ, and two kurtosis parameters, p and ζ, where p is also known as

the index parameter. A lower p or ζ leads to a higher kurtosis.

To price an option under the flexible GH model, the subordinated option pricing framework from

5The parameter domains given in Barndorff-Nielsen and Halgreen (1977): δ ≥ 0, γ > 0 if p > 0, δ > 0, γ > 0 if p = 0,
and δ > 0, γ ≥ 0 if p < 0, are sufficient for the GIG and GH distributions to be defined. However, the subordinated
model in Section 1 further requires the mean of the GIG distribution, E[g1], to be well defined. The parameter domains
in Equation (4) therefore incorporate the result from Jørgensen (1982), that the GIG distribution will have a well defined
mean except where γ = 0 for −1 ≤ p < 0.
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Equation (3) may be used where the characteristic function of logSt is given by

φlogSt(u) = S0 exp{iu(r − q + ω)t}
[
1− 2

γ2

(
iuθ − 1

2
σ2u2

)]− pt2 Kp

(
ζ
√

1− 2
γ2

(
iuθ − 1

2σ
2u2
))

Kp(ζ)

t ,
(6)

and ω = −p2 ln
[(

1− 2
γ2

(
θ + 1

2σ
2
))]

+ ln

[
Kp
(
ζ
√

1− 2
γ2

(θ+ 1
2σ

2)
)

Kp(ζ)

]
for θ <

(
γ2

2 −
σ2

2

)
. The model is

derived from φg1(u), the characteristic function of the GIG distribution, as given in Appendix B.1.

2.2 Special Cases of the Flexible GH Model

In addition to the flexible GH model, in this section we provide six three-parameter option pricing models,

which are special cases of the flexible GH option pricing model. These six models can be divided into two

groups: first, the four special cases obtained by restricting p and second, the two special or limiting cases

where ζ = 0 (Barndorff-Nielsen, Mikosch, and Resnick, 2001; Barndorff-Nielsen and Shephard, 2012).

As to restricting p, where p = 1, the flexible GH model reduces to a hyperbolic (H) model6, which uses

a positive hyperbolic (PH) distribution for g1. Setting p = −1 leads to a reciprocal hyperbolic (RH)

model, in which g1 follows a reciprocal positive hyperbolic (RPH) distribution. For p = − 1
2 , we have

a normal inverse Gaussian (NIG) distribution with g1 following an inverse Gaussian (IG) density, and

for p = 1
2 , we reach a normal reciprocal inverse Gaussian (NRIG) distribution, which has g1 following

a reciprocal inverse Gaussian (RIG) density. For these four mutually exclusive special cases, imposing

the restriction that γ2 = ζ
Kp+1(ζ)
Kp(ζ) from Equation (5), will satisfy the subordinated model’s requirement

from Section 1 that E[g1] = 1.

On the other hand, where ζ = 0, the flexible GH model reduces to two other subclasses. For δ = 0

and p > 0, we obtain a VG model7, which has g1 following a gamma distribution, Γ(p, γ
2

2 ). For γ = 0

and p < −1, the flexible GH model reduces to a t model8 with −2p degrees of freedom9, under which

g1 follows a reciprocal gamma density, RΓ(−p, δ
2

2 ). To satisfy E[g1] = 1 in the VG model, where

g1 ∼ Γ(α, β), E[g1] = α
β = 2p

γ2 = 1 such that γ =
√

2p, for p > 0. For the t model10, where g1 ∼ RΓ(α, β),

E[g1] = β
α−1 = δ2

2(−p−1) = 1 such that δ =
√

2(−p− 1), for p < −1. For ζ = 0, the VG and t models

are complementary special cases in respect of the flexible GH model’s domain for p, under Equation (4).

We may note that all six special cases are also skewed, since no restriction is imposed on the parameter

6Further, where δ = 0 in the hyperbolic distribution, we retrieve the Laplace distribution (Barndorff-Nielsen, 1977).
7The variance gamma distribution is a special case of the normal gamma distribution obtained when the gamma mixing

density has equal parameters (Madan and Seneta, 1990; Choy and Chan, 2008).
8The t distribution used here is different to other skewed versions of the t distribution that have been proposed by Hansen

(1994), Jones and Faddy (2003) and Azzalini and Capitanio (2003). For instance, while these alternative skewed t distri-
butions all have two heavy tails, the skewed t distribution that is a subclass of the GH distribution, as used in this paper,
has one heavy tail and one semi-heavy tail (Aas and Haff, 2006).

9The degrees of freedom is 2α where g1 ∼ RΓ(α, β) (Praetz, 1972; Blattberg and Gonedes, 1974).
10The normalisation of E[g1] = 1 means that the t distribution is not a ‘Student’ t distribution, which requires equal

parameters in the reciprocal gamma density of g1 (Seneta, 2004).
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θ. Table 1 summarises the flexible GH model’s parameter conditions required to obtain its special cases.

The number of three-parameter option pricing models nested by our flexible GH model exceeds that for

Eberlein and Prause’s GH model (2002), as their fixing of p enables only four three-parameter special

cases to be obtained.

Table 1: Special cases of the flexible GH option pricing model.

GH(p, ζ, θ, σ) parameter conditions Density of X1 Density of g1

Hyperbolic model Positive hyperbolic

GH(1, ζ ≥ 0, θ, σ), δ ≥ 0, γ > 0 H(ζ, θ, σ) PH(δ, γ)

Reciprocal hyperbolic model Reciprocal positive hyperbolic

GH(−1, ζ > 0, θ, σ), δ > 0, γ > 0 RH(ζ, θ, σ) RPH(δ, γ)

Normal inverse Gaussian model Inverse Gaussian

GH(− 1
2 , ζ > 0, θ, σ), δ > 0, γ > 0 NIG(ζ, θ, σ) IG(δ, γ)

Normal reciprocal inverse Gaussian model Reciprocal inverse Gaussian

GH( 1
2 , ζ ≥ 0, θ, σ), δ ≥ 0, γ > 0 NRIG(ζ, θ, σ) RIG(δ, γ)

Variance gamma model Gamma

GH(p > 0, 0, θ, σ), δ = 0, γ =
√

2p VG(p, θ, σ) Γ(p, p)

t model Reciprocal gamma

GH(p < −1, 0, θ, σ), δ =
√

2(−p− 1), γ = 0 t−2p(−p, θ, σ) RΓ(−p,−p− 1)

ζ = δγ. For the hyperbolic, reciprocal hyperbolic, normal inverse Gaussian and normal reciprocal
inverse Gaussian models, γ is given by Equation (5). For all models, E[g1] = 1.

Figure 1 demonstrates the diversity among the six special cases of the flexible GH model. To generate

the surface, we simulated flexible GH option prices for varying p and ζ. For a call option with 0.95

moneyness and with three weeks until expiry, the relationship between kurtosis and the option price

manifestly differs across the special cases. For p < 0, including the NIG, RH and t subclasses, a higher

kurtosis (lower p or ζ) corresponds with a lower option price whereas the opposite relationship can be seen

when p > 0, which encompasses the NRIG, H and VG models. Further, under the VG model, for p < 2,

the relationship inverts and an increased kurtosis reduces the option price. Albeit only one instance of

a variety of surfaces that could be shown for options of alternate strike prices and maturities, Figure 1

can attest to the option pricing flexibility that having two kurtosis parameters affords the proposed GH

model compared to its special cases, which each only have one kurtosis parameter.

2.3 The Limiting Cases

For the four GH special cases that result from restricting p, the option price can be computed using the

characteristic function of the flexible GH model presented in Equation (6). However, for the special cases

where ζ = 0, the limiting case of the modified Bessel function of the third kind with index h, Kh(·), may

be used to obtain a parsimonious form of the characteristic function, φlogSt(u). In this subsection we

present the limiting GH cases under the VG and t models.
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Figure 1: Simulated option prices under the flexible GH model.

The price of an in-the-money call option with a strike price equal to 95% of the spot price, time-to-
maturity equal to 3 weeks, θ = −0.04 and σ = 0.17. The six special cases are reciprocal hyperbolic at
p = −1, normal inverse Gaussian at p = − 1

2 , normal reciprocal inverse Gaussian at p = 1
2 , hyperbolic

at p = 1, variance gamma at ζ = 0 and p > 0, and the t model at ζ = 0 and p < −1. At ζ = 0 and
−1 ≤ p ≤ 0, the mean of the GH distribution is undefined.

2.3.1 The VG Model

For the VG model, we can match the flexible GH model’s parameters to the existing VG option pricing

model’s parameters (Madan, Carr, and Chang, 1998). The VG model has three parameters, ν > 0, θ

and σ. The parameters θ and σ are equivalent to those in the flexible GH model, while ν in the VG

model is equal to 1
p under the flexible GH model. Under the VG model, ν is also the variance of the

gamma variable, g1. The VG option price can be computed using the model in Equation (3) together

with the characteristic function,

φlogSt(u) = S0 exp{iu(r − q + ω)t}
[
1− ν

(
iuθ − 1

2
σ2u2

)]− t
ν

, (7)

where ω = 1
ν ln

[
1− ν

(
θ + 1

2σ
2
)]

for θ <
(

1
ν −

σ2

2

)
. In Appendix B.2, we prove this result, and in

Appendix C we show that it is the limiting case of the characteristic function used in the flexible GH

model (Equation (6)).
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2.3.2 The t Model

A form for an option pricing model that uses the GH special case and skewed version of the t distribution

has not yet been proposed in the literature11. Using the three parameters ν = − 1
p , where 0 < ν < 1,

θ and σ to mirror the VG model, we propose that the t option price, with 2
ν degrees of freedom, be

calculated using

φlogSt(u) = S0 exp{iu(r − q + ω)t}×2
(

1
ν − 1

) 1
2ν

Γ( 1
ν )

[
−
(
iuθ − 1

2
σ2u2

)] 1
2ν

K 1
ν

(√
−4

(
1

ν
− 1

)(
iuθ − 1

2
σ2u2

))t , (8)

where ω = − ln

[
2( 1
ν−1)

1
2ν

Γ( 1
ν )

[
−
(
θ + 1

2σ
2
)] 1

2ν K 1
ν

(√
−4
(

1
ν − 1

) (
θ + 1

2σ
2
))]

for θ < −σ
2

2 . Kh(·) is the

modified Bessel function of the third kind with index h. Appendix B.3 provides the proof of this

result using the reciprocal gamma characteristic function, φg1(u), and Appendix C shows how it is a

limiting case of the flexible GH model. We may note that the t distribution is the only instance of the

GH distribution where, rather than having two semi-heavy tails, it has one heavy tail (the tail in the

direction of the skewness) and one semi-heavy tail (Aas and Haff, 2006).

3 Empirical Study

3.1 The Data

The data used are S&P 500 Index European options observed in 2012. Whilst we analyse call and put

data for the years 2008-2014, results using one year of put options are presented for conciseness. Put

options are featured because they carry more information about the left tail of the log-return distribution

than call options, corresponding to the side on which the literature has found the log-distribution to be

skewed (Madan and Milne, 1991). Data for the year 2012 are chosen because they contain a variety of

economic conditions, ranging from bullish to neutral to bearish. The S&P 500 Index during 2012 and its

implied volatility index, VIX, can be seen in the lower two panels of Figure 2. Option expiry is monthly,

occurring on the third Friday of each month. Option prices with moneyness (the strike-to-spot price

ratio) of between 0.94 and 1.06 and times-to-maturity greater than one week are sampled amounting

to 60 option prices per day, on average. In total, our sample consists of 250 trading days and 15,058

put option prices, as characterised in Table 2. Finally, the risk-free rate used is the annualised yield of

one-month U.S. Treasury bills.

11In Yeap (2014), a version of the t option pricing model was proposed, the Skew-t option pricing model, which differs
to the model presented in this paper only in that ν = Var[g1]. In this paper, we revised the parameterisation to allow for
the t model to be a special case of the flexible GH model. The variance of g1 is now given by ν

1−2ν
instead. Otherwise, in

the independent asset returns setting, a symmetric t option pricing model has been proposed (Cassidy, Hamp, and Ouyed,
2010).
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Table 2: Options data characteristics.

Short-term Medium-term Long-term All

1 week < τ < 1 month 1 month ≤ τ ≤ 3 months τ > 3 months

Out-of-the-money 8% 24% 11% 43%

0.94 < K
S < 0.98 [$3.49] [$13.40] [$26.86] [$14.87]

At-the-money 8% 22% 11% 41%

0.98 ≤ K
S ≤ 1.02 [$16.53] [$29.20] [$43.80] [$30.55]

In-the-money 4% 9% 3% 16%

1.02 < K
S < 1.06 [$51.81] [$58.79] [$71.32] [$59.01]

All 20% 55% 25% 100%

[$18.29] [$27.48] [$39.17] [$28.42]

A contingency table for S&P 500 Index European put options observed during 2012. n = 15, 058.
Average option prices are given in square brackets. K is the strike price, S is the spot price, and τ is
time-to-maturity.

3.2 Parameter Estimation and In-Sample Fit

In our empirical study, we compare the flexible GH option pricing model to the VG, t and Black-Scholes

models. Of the six three-parameter special cases, we focus on the VG and t models because previously

the fixing of p precluded the GH option pricing model from reducing to the VG and t models (Prause,

1999). For brevity, our flexible GH option pricing model is referred to as just the GH model in the

empirical sections to follow. First, we examine in-sample fit. Second, we carry out misspecification

diagnostics. Thirdly, we evaluate the four models’ out-of-sample pricing errors.

Before reporting the three performance metrics, we commence with a discussion of the risk-neutral

parameter estimates. The objective function is the sum of squared percentage pricing errors12 and the

optimisation is conducted daily13, instructed by a Nelder-Mead simplex algorithm (Gilli and Schumann,

2012). From Table 3 and starting with the volatility parameter, σ, the Black-Scholes model estimates the

smallest average σ equal to 14.6%, compared to the VG model (15.0%) and the t and GH models (both

15.8%). The t model estimates the single largest σ equal to 24.8%. For the skewness parameter, θ, on

all days θ is negative. Average θ values are similar across models: the VG model, -0.044, t model, -0.047

and GH model, -0.046. However, the t model estimates the most negative θ equal to -0.149, compared

to the most negative θ for the VG model equal to -0.100 and the GH model, -0.098. The top two panels

of Figure 2 show a contemporaneity between higher σ estimates and more negative θ estimates14, such

as during mid-May to mid-June 2012. This behaviour of σ and θ suggests a detection of the leverage

effect (Christie, 1982), where volatility is higher when log-returns are more negatively skewed.

12A similar objective was used by Madan, Carr, and Chang (1998) and accords with investors’ interest in rate of return
rather than absolute option price changes.

13The sample size varied from day to day but on average was 60, which is consistent with the literature. In Bakshi, Cao,
and Chen (1997), daily estimation involved on average 52 options per sample.

14The σ and θ estimates under the VG and t models were not superimposed on Figure 2 since their relationships were
similar to that under the GH model.
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Table 3: Empirical risk-neutral parameter estimates.

Parameter Mean Standard deviation Minimum Maximum

Black-Scholes

σ 0.146 0.017 0.116 0.206

RMSPE 16.69% 4.49% 8.85% 34.65%

VG model

σ 0.150 0.022 0.114 0.224

θ -0.044 0.016 -0.100 -0.009

p 9.305 9.752 1.777 62.350

RMSPE 9.50% 3.81% 4.42% 26.52%

t model

σ 0.158 0.025 0.113 0.248

θ -0.047 0.021 -0.149 -0.013

p -5.550 5.569 -42.824 -1.448

RMSPE 8.38% 3.28% 3.51% 23.98%

GH model

σ 0.158 0.025 0.113 0.225

θ -0.046 0.020 -0.098 -0.012

p -5.151 5.465 -30.180 8.014

ζ 0.417 1.483 0.000 18.778

RMSPE 8.38% 3.27% 3.51% 23.98%

Parameter estimates and RMSPE (root mean squared percentage error) are daily
averages for the year 2012, which includes 15,058 put prices over 250 days. The
average sample size is therefore 60.

For the kurtosis parameter, p, the VG model’s average estimate of 9.305 is higher in magnitude than

the average p estimate under the t model, which equals -5.550 (11.1 degrees of freedom). With respect to

the models’ maximum magnitudes of p, the VG model obtains 62.350, while the t model obtains 42.824,

and the GH model, 30.180. On the other hand, the models’ lowest magnitudes for p are similar: the VG

model, 1.777, the t model, 1.448 and GH model, 1.117. The minimum magnitude of p under the GH

model indicates that the GH model does not estimate a log-distribution that corresponds precisely to

the reciprocal hyperbolic (p = −1), NIG (p = − 1
2 ), NRIG (p = 1

2 ) or hyperbolic (p = 1) special case on

any of the days sampled. Elucidating a separate stylised fact about options data, the time-series view

of p in Figure 3, also reveals cyclical behaviour in the tail thickness of the log-distribution. The tails

begin the trading month15 thick (low magnitude of p) and then become thinner, with the magnitude

of p culminating on the second Friday of each month. Then, drastically, p falls in magnitude and the

log-distribution is fat-tailed in the week through to expiry.

15The options trading month is in accordance with the option expiry schedule. Expiry is on the third Friday of each
calendar month and so the trading month begins on the subsequent Monday.
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Figure 2: Daily estimates of the risk-neutral volatility, σ, and skewness, θ, parameters, with the S&P
500 Index and VIX.

The data used are S&P 500 Index puts observed in 2012. The parameter estimates depicted are those
under the GH model. VIX is the volatility index, which measures the implied volatility of S&P 500 Index
options.

Finally, for the GH model’s second kurtosis parameter, ζ averages 0.417 while its maximum is 18.778.

Outlying ζ values are observed in Figure 3 but they do not entail particularly worsened pricing errors.

This may be explained by reference to Figure 1 of Subsection 2.2, which demonstrates that the GH

option price is less sensitive to changes in ζ and p as the magnitudes of the parameters become larger.

Regarding the special cases of the GH model, the minimum observed ζ is 3.547×10−14. Coupled with

the observation that p > 0 or p < −1 on all sample days, we can infer that on the days where ζ = 0

(Figure 3), the GH model estimates a log-distribution which is either the VG (p > 0) or t (p < −1)

special case. Indeed, the trajectory of the GH parameter p in the upper panel of Figure 3 appears to

predominantly track the t model’s estimated values for p, strongly suggesting that the t model may be

a more plausible option pricing model than the VG model.
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Figure 3: Daily estimates of risk-neutral kurtosis parameters, p and ζ.

The parameter ζ estimates are for the GH model. We may note that the special cases of the GH model
are obtained as follows: hyperbolic at p = 1, normal reciprocal inverse Gaussian at p = 1

2 , normal inverse
Gaussian at p = − 1

2 , reciprocal hyperbolic at p = −1, variance gamma at ζ = 0 and p > 0, and the t
model at ζ = 0 and p < −1. Data used are S&P 500 Index puts observed in 2012.

We turn now to the first of the performance measures, in-sample pricing error. The daily-averaged

root mean squared percentage error (RMSPE) for the GH model is the lowest, at 8.38% from Table 3. On

the other hand, the Black-Scholes model starkly underperforms with an almost doubled daily-averaged

RMSPE of 16.69%. As foreshadowed by the GH model’s ζ and p estimates (Figure 3), between the VG

and t models, the t model is the superior performer with an average daily RMSPE of 8.38% compared to

the VG model’s 9.50% RMSPE. The model with the most variable in-sample performance is the Black-

Scholes model with the standard deviation of its daily RMSPE equal to 4.49%, followed by the VG

model (RMSPE standard deviation of 3.81%) and then the t and GH models, with standard deviations

of RMSPE equal to 3.28% and 3.27% respectively. The t and GH models also attain the best in-sample

pricing accuracy of all models with their lowest daily RMSPE of 3.51%. The minimum RMSPE is inferior

under the VG model, equal to 4.42%, and worst under the Black-Scholes model, equal to 8.85%.
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Table 4: In-sample pricing root mean squared percentage errors (RMSPE) and mean absolute per-
centage errors (MAPE).

In-sample RMSPE (%) In-sample MAPE (%)

Time-to-maturity Time-to-maturity

Short Medium Long All Short Medium Long All

Out-of-the-money

Black-Scholes 33.03 15.26 12.73 19.57 25.78 12.02 10.12 14.23

VG model 15.72 11.31 12.71 12.64 10.98 8.55 10.01 9.39

t model 10.45 10.80 12.19 11.10 8.06 8.04 9.46 8.40

GH model 10.47 10.78 12.19 11.10 8.07 8.04 9.46 8.40

At-the-money

Black-Scholes 25.31 16.34 9.55 17.15 23.37 15.29 8.38 15.06

VG model 12.83 6.66 5.80 8.07 9.99 5.42 4.75 6.14

t model 9.63 6.03 5.56 6.79 7.93 5.03 4.51 5.46

GH model 9.61 6.03 5.55 6.78 7.91 5.03 4.50 5.46

In-the-money

Black-Scholes 7.78 12.29 12.47 11.34 6.57 11.77 12.20 10.51

VG model 6.66 9.37 10.09 8.88 5.83 9.07 9.77 8.35

t model 6.03 8.69 9.49 8.24 5.30 8.36 9.20 7.71

GH model 6.13 8.70 9.54 8.27 5.35 8.37 9.25 7.73

All

Black-Scholes 26.60 15.26 11.38 17.48 20.99 13.30 9.56 13.98

VG model 13.19 9.35 9.89 10.38 9.56 7.37 7.63 7.89

t model 9.39 8.79 9.47 9.08 7.46 6.88 7.21 7.08

GH model 9.40 8.78 9.47 9.08 7.46 6.88 7.21 7.08

The smallest error measure within each group is italicised. Parameters are estimated using all options
on a given day, regardless of their time-to-maturity and moneyness (60 data points per sample, on
average, and 250 samples). Whereas pricing errors are classified by time-to-maturity and moneyness
in accordance with the categories in Table 2. The errors are then averaged across the 250 testing days
collectively, n = 15, 058, reconciling them with the daily-averaged RMSPE values in Table 3.

While Table 3 offered a gauge of overall in-sample fit, in Table 4 we examine how each model performs

for various types of options, classified in terms of moneyness and time-to-maturity in accordance with

Table 2. Between the two models that have the overall best in-sample fit, the GH and t models, we note

two discrepancies in their cross-sectional fit. For at-the-money (ATM) options, the GH model is more

accurate than the t model, particularly for short-term, ATM options where the GH model’s RMSPE is

9.61% compared to 9.63% for the t model. Whereas for in-the-money (ITM) options, the t model has

the pricing advantage over the GH model, with an 8.24% RMSPE compared to the GH model’s 8.27%.

The superior performance of the t model for ITM put options, indicates that the t distribution provides

an optimal fit of the left tail of the log-distribution. We also note that between the VG and the t models,

the t model fits all categories of options better than the VG model.

Furthermore, the Black-Scholes model’s fit is best for ITM options, whereas the VG, t and GH models’

fits are best for ATM options. The VG, t and GH models achieve the greatest pricing improvement



Yeap et al. | Flexible GH Option Pricing 16

compared to the Black-Scholes model in fitting ATM options. They reduce the Black-Scholes RMSPE

from 17.15% to 8.07% (the VG model), 6.79% (the t model) and 6.78% (the GH model). For varying

time-to-maturity, the Black-Scholes and VG models’ pricing of short-term options are noticeably worse

than the models’ pricing of medium and long-term options. Meanwhile, the GH and t models’ pricing

performances are relatively even across time-to-maturity. Under the VG, t and GH models, it is short-

term options that benefit most compared to the Black-Scholes model. The Black-Scholes RMSPE of

26.60% reduces to 13.19% under the VG model, and 9.39% and 9.40% under the t and GH models

respectively. Lastly, results for the mean absolute percentage pricing error (MAPE) are also computed.

While, the average overall MAPE was 2.00% lower than the average RMSPE, cross-sectionally the

different error measure does not alter which model is superior in any given category.

3.3 Orthogonality Test

A cross-sectional analysis of the pricing errors leads us to the second yardstick for assessing the models,

which is also with respect to in-sample fit. A well specified model should not only achieve a minimal

pricing error but should also return pricing errors that are independent of moneyness, time-to-maturity

and interest rates (Rubinstein, 1985). From the Black-Scholes formula, which has a single parameter,

there is a one-to-one mapping between the option price the option’s implied volatility. As a result,

the orthogonality of pricing errors can be ascertained via the orthogonality of option prices’ implied

volatilities (IV) (Eberlein, Keller, and Prause, 1998). In this section, we embark on this alternative and

equivalent IV approach.

In order to calculate IV under the models (other than Black-Scholes), we solve for σ after equating

the Black-Scholes option price to the estimated option prices under the VG, t and GH models. For Black-

Scholes, IV is computed by equating the Black-Scholes option price to the observed price, equivalent to

the Black-Scholes model’s σ for an individual option. As a preliminary and non-comprehensive matter,

Figure 4 shows the IV surfaces for an arbitrary sample day, Thursday, 17 May 2012. A validly specified

model with orthogonal IV to moneyness and time-to-maturity should manifest a horizontal IV surface.

Subfigure 4(a) shows that the Black-Scholes IV surface is downward sloping, resembling a ‘smirk’ (Pan,

2002). On the other hand, the VG, t and GH models’ IV surfaces are more horizontal. As one indication,

the IV range under the Black-Scholes model of 8.6% to 21.0% reduces to a range of 14.0% to 21.0% under

the VG model (Subfigure 4(b)), 14.8% to 20.4% under the t model (Subfigure 4(c)), and 14.9% to 20.9%

under the GH model (Subfigure 4(d)). Inspecting specific cross-sections of the IV surfaces, all alternative

models achieve corrections (slope flattening) of the Black-Scholes model’s maturity-related bias (Bakshi,

Cao, and Chen, 1997) for ITM puts and moneyness-related bias for longer-dated options. All three

models’ IV surfaces exhibit a quadratic form for short-term, ATM options.
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Figure 4: Implied volatility surfaces.

(a) The Black-Scholes model (b) The VG model

(c) The t model (d) The GH model

An arbitrary day, Thursday, 17 May 2012, is sampled (n = 63) as a preview to the orthogonality test in
Table 5. OTM and ITM refer to out-of-the-money and in-the-money.

To verify this misspecification diagnosis, we appeal to a linear regression model of the implied volatl-

ities (Eberlein, Keller, and Prause, 1998). We include quadratic moneyness and quadratic time-to-

maturity as regressors, in addition to their linear terms and the interest rate. Rather than observing

a single day, we run the regression on the entire 250-day sample, containing 15,058 observations. The

interpretation of the linear regression model’s coefficient of determination is that a lower R2 signifies
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greater orthogonality of IV. The regression model is as follows:

IVi = b0 + b1

[
Ki

Si

]
+ b2

[
Ki

Si

]2

+ b3 τi + b4 τ
2
i + b5 ri + ei, (9)

where for each observed put option price, IVi is the implied volatility expressed as a decimal rather than

as a percentage, τi is the time to maturity in years, Ki is the strike price, Si and ri are the spot S&P

500 Index and the risk-free interest rate (as a decimal) on the date the option price is observed, and ei

is the random error term.

Table 5: Orthogonality results.

Explanatory variable Black-Scholes VG model t model GH model

Intercept 1.21 8.43 8.40 8.40

(0.23)** (0.17)** (0.16)** (0.16)**

Moneyness -1.51 -16.54 -16.46 -16.46

(0.47)** (0.34)** (0.33)** (0.33)**

Moneyness2 0.425 8.26 8.20 8.21

(0.24) (0.17)** (0.16)** (0.17)**

Time-to-maturity 0.024 -0.078 -0.077 -0.077

(0.01)** (0.01)** (0.01)** (0.01)**

Time-to-maturity2 0.042 0.217 0.221 0.220

(0.02)* (0.02)** (0.02)** (0.02)**

Interest rate -14.72 -15.19 -15.26 -15.34

(0.45)** (0.39)** (0.38)** (0.38)**

R2 52.5% 24.1% 26.1% 26.0%

TSS 12.43 6.67 6.53 6.56

F -statistic 3329.2** 953.4** 1061.3** 1056.4**

S&P 500 Index put options from 2012 are used, n = 15,058, moneyness is the strike-
to-spot price ratio, time-to-maturity is in years. Heteroskedastic standard errors are
shown in parentheses, ** indicates statistical significance at a 1% level of signifi-
cance, * indicates significance at a 5% level. The critical t-statistics are respectively
t(0.005,15052) = ±2.58 and t(0.025,15052) = ±1.96. TSS is the total sum of squared errors.
At a 1% level of significance, the critical F(0.01,5,15052)-statistic is 3.02.

As presented in Table 5, for all models the F -statistics and coefficients for moneyness, time-to-

maturity and the interest rate are statistically significant at a 1% level, using heteroskedasticity-consistent

standard errors (White, 1980). As anticipated by Figure 4, the coefficients for the quadratic terms for

moneyness and time-to-maturity are significant (at a 1% level) for only the VG, t and GH models. Also

consistent with Figure 4, where the Black-Scholes’ IV range reduces, the regression models’ total sum

of squared differences between observed IV and mean IV (TSS) similarly reduce from 12.43 (the Black-

Scholes model) to 6.67 (the VG model), 6.53 (the t model) and 6.56 (the GH model). Not only however,

does that the Black-Scholes model’s regression’s overall variation decrease, the proportion explained, as

measured by R2, also halves from 52.5% to 24.1% under the VG model, 26.1% under the t model, and
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26.0% under the GH model. The lower R2 and lower F -statistics highlight an increase in orthogonality,

allowing us to deduce that all three models ameliorate the misspecification of the Black-Scholes model16.

3.4 Out-of-Sample Pricing Performance

Finally, we turn to the out-of-sample pricing performance of the option pricing models. This third

performance measure is motivated not only practically (to predict prices), but also statistically. Whilst in-

sample pricing performance will always benefit from additional parameters, advantaging the GH model,

the out-of-sample context can penalise overfitting (Bakshi, Cao, and Chen, 1997). In order to compute

the out-of-sample pricing errors, parameters are estimated over a 5-day training period and then the

option prices are predicted for the next day out of that period. Continuing with S&P 500 Index put

options data for 2012, there are now 245 testing samples and a total of 14,794 pricing errors. On average

each training sample has 301 data points.

Out-of-sample, the results in Table 6 show that the GH model emerges as the sole superior model

overall in terms of both RMSPE (15.38%) and MAPE (11.04%). Unlike in the in-sample context, the

GH model achieves greater accuracy than the t model. The t model attains a RMSPE of 16.33%, almost

a full percentage point (0.95%) higher than the GH model, and a MAPE of 11.16% (0.12% higher than

the GH model). Between the VG model and the t model, the t model is superior. The VG model obtains

a higher RMSPE of 16.73% and a higher MAPE of 11.52%. All three models continue to prevail over

the Black-Scholes model, which returns a RMSPE of 19.94% and a MAPE of 15.10%.

Cross-sectionally, the GH model is the best model for ATM, OTM, short-term and long-term options,

outperforming the other models by a particularly wide margin for short-term options (a 2.97% margin)

and OTM options (a 1.45% margin). It is the t model that fits the ITM options marginally better

than the GH model. For the medium-term option prices, the VG model arises as the best predictor

when MAPE is considered. We also remark that out-of-sample, the Black-Scholes model provides the

best fit of OTM, long-term options. Lastly, focusing on the relative performance between the VG and t

models, the t model offers a better out-of-sample fit for six of the nine moneyness and time-to-maturity

combinations17. Compared to the in-sample setting, the out-of-sample pricing advantage of the t model

over the VG model thus narrows.

16The VG model achieves a slightly lower R2 and F -statistic than the GH and t models likely due to, as portrayed in
Subfigure 4(b), a non-linear, non-quadratic dependency of IV on moneyness, which is not captured by the regression in
Equation (9).

17We note that some pricing improvements are observed in the out-of-sample context compared to the in-sample context
for ITM options (for example, ITM option prices as fit by the Black-Scholes and VG models). This can be explained by
the relatively small representation of ITM options (16%) in the data compared to ATM (41%) and OTM (43%) options
(see Table 2), such that the ITM options have a relatively weak influence over the in-sample parameter fitting.
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Table 6: Out-of-sample pricing root mean squared percentage errors (RMSPE) and mean absolute
percentage errors (MAPE).

Out-of-sample RMSPE (%) Out-of-sample MAPE (%)

Time-to-maturity Time-to-maturity

Short Medium Long All Short Medium Long All

Out-of-the-money

Black-Scholes 36.35 19.36 14.34 23.35 26.95 15.38 11.58 17.04

VG model 33.77 17.48 15.74 21.87 22.12 13.99 13.13 15.60

t model 33.63 17.27 15.35 21.66 20.68 13.86 12.66 15.09

GH model 29.31 17.28 15.32 20.21 19.52 13.89 12.65 14.85

At-the-money

Black-Scholes 27.98 17.61 10.06 18.61 23.11 15.38 8.49 15.06

VG model 20.44 9.76 7.28 12.10 14.52 7.87 5.73 8.59

t model 16.51 10.23 7.64 11.17 11.77 8.27 6.11 8.37

GH model 15.18 10.21 7.50 10.77 11.56 8.26 6.03 8.31

In-the-money

Black-Scholes 7.14 12.10 11.59 10.98 5.92 11.26 10.93 9.87

VG model 6.45 9.35 9.00 8.66 5.50 8.61 8.29 7.78

t model 5.64 9.08 9.29 8.39 4.79 8.27 8.58 7.45

GH model 5.70 9.13 9.28 8.43 4.80 8.32 8.57 7.48

All

Black-Scholes 29.88 17.60 12.30 19.94 21.70 14.68 10.13 15.10

VG model 26.01 13.55 11.96 16.73 16.31 10.61 9.30 11.52

t model 24.86 13.54 11.85 16.33 14.53 10.65 9.29 11.16

GH model 21.89 13.54 11.79 15.38 13.93 10.67 9.25 11.04

S&P 500 Index put options during 2012 are used. The smallest error measure within each group
is italicised. The training sample is 5 days (on average containing 301 data points) and the testing
sample is one day out of the training sample (on average containing 60 data points). There are 245
testing days. Parameters are estimated using all options. Whereas pricing errors are classified by
time-to-maturity and moneyness in accordance with the categories in Table 2. The errors are then
averaged across the 245 testing days collectively, n = 14, 794.

4 Conclusion

Insight into the risk-neutral distribution of logarithmic stock returns is vital to the fitting and prediction

of option prices. In this paper, we propose a flexible GH option pricing model, with four parameters all

free to be estimated. We also present six three-parameter option pricing models, hosted by the flexible

GH model: the VG, t, hyperbolic, reciprocal hyperbolic, normal inverse Gaussian and normal reciprocal

inverse Gaussian option pricing models. In respect of the seven models’ properties, the flexible GH

model and its special cases generalise the Black-Scholes model by allowing the passage of economic time

to depart from the deterministic process of physical time. As such, our class of flexible GH models

are time-subordinated models, which can cope with yet another facet of the unpredictable financial

market. In addition, the subordination to Brownian motion with drift means that the class of flexible
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GH processes capture excess kurtosis and skewness.

Using S&P 500 Index options, we empirically compare the flexible GH option pricing model to the

VG, t and Black-Scholes models. Our findings are three-fold. First, the flexible GH, VG and t models all

reduce the Black-Scholes model’s implied volatility smirk. Secondly, between the two three-parameter

models, the weight of the empirical results supports the verdict that the t model is the more tenable

model for pricing options. Remarkably, the t model’s average in-sample fit is better than that of the

VG model for all option types, a result which can be corroborated by the flexible GH model’s parameter

estimates. Out-of-sample, the t model also accomplishes a lower pricing error than the VG model for

the majority of strike and maturity combinations. Ultimately however, we find that the assumption

of generalised hyperbolically distributed log-returns has the greatest merit even in the out-of-sample

context. With all four models considered, our flexible GH option pricing model attains the least absolute

and squared out-of-sample pricing errors. Hence, a practitioner may prefer to use our flexible GH model

to predict the prices of S&P 500 Index options over the VG, t and Black-Scholes models.

In sum, having reparameterised the GH option pricing model into a tractable form and validated it

empirically, this paper sheds additional light on the distribution underlying option prices. Our flexible

GH option pricing model however is a static model. Future work to improve the prediction of option

prices may explore dynamic extensions to this paper’s flexible GH model. Such an undertaking may begin

with an empirical appraisal of Finlay and Seneta’s GH option pricing model (2012), which represents

one approach to incorporating time-dependence.

Appendix A

Subordinated Option Pricing Model Derivation

In this appendix, we derive the result in Equation (3). The price of a European call option at time t,

with time-to-maturity, τ = T − t, and strike price, K, is given by

Ct = EQ[e−rτ (ST −K)+|Ft]

= Ste
−qτΠ1 −Ke−rτΠ2, (A.1)

where EQ[·] denotes the expectation taken under the unique risk-neutral probability measure, Q, and Π1

and Π2 denote risk-neutral probabilities. From Bakshi and Madan (2000), Π1 and Π2 can be expressed
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in terms of the characteristic function of the logarithmic stock price, φlogSt(u), through

Π1 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iw log(K)φlogSt(w − i)

iwφlogSt(−i)

)
dw (A.2)

Π2 =
1

2
+

1

π

∫ ∞
0

Re

(
e−iw log(K)φlogSt(w)

iw

)
dw.

The price of a European put option is deduced by put-call parity as

Pt = Ke−rτ (1−Π2)− Ste−qτ (1−Π1). (A.3)

The characteristic function of the logarithmic stock price at time t, with St defined in Equation (2),

Section 1 is given by

φlogSt(u) = EQ[exp{iu log(St)}|F0]

= EQ[Siut |F0]

= EQ [S0 exp {iu [(r − q)t+Xt + ωt]}]

= S0 exp{iu(r − q + ω)t}φXt(u)

= S0 exp{iu(r − q + ω)t}φX1
(u)t, (A.4)

since for Lévy processes such as Xt (defined in Equation (1), Section 1), φXt(u) = φX1
(u)t (Barndorff-

Nielsen, Mikosch, and Resnick, 2001).

Assuming an arbitrage-free and complete market, the discounted stock price process Ste
−(r−q)t is a

martingale under Q (Harrison and Pliska, 1981). For the martingale to hold, the drift is adjusted with

ω, such that for any positive t,

S0 = EQ[Ste
−(r−q)t|F0]. (A.5)

It follows from Equation (2) that

1 = EQ[eXt+ωt|F0]

ω = −1

t
lnφXt(−i)

= − lnφX1(−i). (A.6)

Lastly, from the definition of Xt in Equation (1), the characteristic function of X1 in Equation (A.4)
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can further be expressed in terms of the characteristic function of g1 as derived below:

φX1 (u) = EQ [exp {iu (θg1 + σW (g1))}]

= Eg1

{
EQ|g1 [exp {iu (θg1 + σW (g1))} | g1]

}
= Eg1

{
exp {iuθg1}EQ|g1 [exp {iuσW (g1)} | g1]

}
= Eg1

[
exp {iuθg1} exp

{
−1

2
σ2u2g1

}]
= Eg1

[
exp

{(
iuθ − 1

2
σ2u2

)
g1

}]
= φg1

(
uθ +

iσ2u2

2

)
, (A.7)

where the second equality follows from the law of iterated expectations. The outer expectation, denoted

by Eg1 [·], is taken with respect to the distribution of g1. EQ|g1 [·] is the expectation taken under the

risk-neutral measure, given g1.

Appendix B

Derivations for the Flexible GH, VG and t Option Pricing Models

In this appendix, we derive the characteristic function of the logarithmic stock returns for the flexible

GH, VG and t option pricing models presented in Equations (6), (7) and (8). The derivations use

the characteristic functions of the generalised inverse Gaussian (GIG), gamma and reciprocal gamma

distributions, respectively.

B.1 The flexible GH Model

From Jørgensen (1982), the characteristic function of the GIG distribution is given by

φg1(u) =

(
γ2

γ2 − 2iu

) p
2 Kp

(√
δ2(γ2 − 2iu)

)
Kp(δγ)

=

(
1− 2

γ2
iu

)− p2 Kp

(
ζ
√

1− 2
γ2 iu

)
Kp(ζ)

, (A.8)

where ζ = δγ, γ2 is given by Equation (5) and Kh(·) is the modified Bessel function of the third kind

with index h. Using the result in Equation (A.7), we obtain

φX1
(u) = φg1

(
uθ +

iσ2u2

2

)

=

(
1− 2

γ2

(
iuθ − 1

2
σ2u2

))− p2 Kp

(
ζ
√

1− 2
γ2

(
iuθ − 1

2σ
2u2
))

Kp(ζ)
. (A.9)
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It follows from Equation (A.4) that

φlogSt(u) = S0 exp{iu(r − q + ω)t}φX1(u)t

= S0 exp{iu(r − q + ω)t}
[
1− 2

γ2

(
iuθ − 1

2
σ2u2

)]− pt2
×Kp

(
ζ
√

1− 2
γ2

(
iuθ − 1

2σ
2u2
))

Kp(ζ)

t , (A.10)

where the drift adjustment can be computed using Equation (A.6) as

ω = − lnφX1
(−i)

= −p
2

ln

[(
1− 2

γ2

(
θ +

1

2
σ2

))]
+ ln

Kp

(
ζ
√

1− 2
γ2

(
θ + 1

2σ
2
))

Kp(ζ)

 , (A.11)

for θ <
(
γ2

2 −
σ2

2

)
.

B.2 The VG Model

The characteristic function of the gamma distribution is given by φg1(u) = (1− iuν)−
1
ν such that

φX1
(u) =

[
1− ν

(
iuθ − 1

2
σ2u2

)]− 1
ν

. (A.12)

It follows then that the VG option price can be computed using

φlogSt(u) = S0 exp{iu(r − q + ω)t}
[
1− ν

(
iuθ − 1

2
σ2u2

)]− t
ν

, (A.13)

with drift adjustment, ω = 1
ν ln

[
1− ν

(
θ + 1

2σ
2
)]

, for θ <
(

1
ν −

σ2

2

)
.

B.3 The t Model

The characteristic function of the reciprocal gamma distribution is given by

φg1(u) =
2(−βiu)α/2

Γ(α)
Kα

[√
−4βiu

]
=

2( 1
ν − 1)

1
2ν

Γ( 1
ν )

(−iu)
1
2νK 1

ν

[√
−4

(
1

ν
− 1

)
iu

]
, (A.14)

where α = 1
ν and β = 1

ν − 1 for 0 < ν < 1. Kh(·) is the modified Bessel function of the third kind with

index h. Using the same procedure as for the flexible GH and VG derivations, the characteristic function
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of X1 is given by

φX1
(u) =

2
(

1
ν − 1

) 1
2ν

Γ( 1
ν )

[
−
(
iuθ − 1

2
σ2u2

)] 1
2ν

K 1
ν

[√
−4

(
1

ν
− 1

)(
iuθ − 1

2
σ2u2

)]
. (A.15)

The characteristic function of logSt will be

φlogSt(u) = S0 exp{iu(r − q + ω)t}×2
(

1
ν − 1

) 1
2ν

Γ( 1
ν )

[
−
(
iuθ − 1

2
σ2u2

)] 1
2ν

K 1
ν

(√
−4

(
1

ν
− 1

)(
iuθ − 1

2
σ2u2

))t , (A.16)

and the drift adjustment,

ω = − ln

2
(

1
ν − 1

) 1
2ν

Γ( 1
ν )

[
−
(
θ +

1

2
σ2

)] 1
2ν

K 1
ν

(√
−4

(
1

ν
− 1

)(
θ +

1

2
σ2

)) , (A.17)

for θ < −σ
2

2 .

Appendix C

The VG and t Limiting Cases of the Flexible GH Model

(i) Suppose p = 1
ν > 0, δ → 0 and γ =

√
2
ν . Then, the flexible GH model reduces to the VG model.

(ii) Suppose p = − 1
ν < −1, γ → 0 and δ =

√
2( 1
ν − 1). Then, the flexible GH model reduces to the t

model.

Proof. Either δ → 0 or γ → 0 implies that ζ → 0. Making use of the properties of the modified Bessel

function of the third kind with index h, Kh(·), that

Kh(y) ∼ Γ(|h|)2|h|−1y−|h| for y ↓ 0,

and that Kh(y) = K−h(y), the characteristic function of X1 under the flexible GH model (Equation

(A.9)) can be further simplified as follows.
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Under the assumptions in (i), we have

φX1
(u) =

(
1− ν

(
iuθ − 1

2
σ2u2

))− 1
2ν

lim
δ→0

Γ( 1
ν )2

1
ν−1

(
δγ
√

1− ν
(
iuθ − 1

2σ
2u2
))− 1

ν

Γ( 1
ν )2

1
ν−1 (δγ)

− 1
ν

=

(
1− ν

(
iuθ − 1

2
σ2u2

))− 1
2ν
(

1− ν
(
iuθ − 1

2
σ2u2

))− 1
2ν

=

(
1− ν

(
iuθ − 1

2
σ2u2

))− 1
ν

,

which is the corresponding characteristic function under the VG model, given in Equation (A.12).

Under the assumptions in (ii), we have

φX1
(u) = lim

γ→0

(
1− 2

γ2

(
iuθ − 1

2
σ2u2

)) 1
2ν K 1

ν

(
δ
√
γ2 − 2

(
iuθ − 1

2σ
2u2
))

K 1
ν

(δγ)

= lim
γ→0

(
1− 2

γ2

(
iuθ − 1

2
σ2u2

)) 1
2ν K 1

ν

(
δ
√
γ2 − 2

(
iuθ − 1

2σ
2u2
))

Γ( 1
ν )2

1
ν−1 (δγ)

− 1
ν

= lim
γ→0

δ
1
ν

Γ( 1
ν )2

1
ν−1

(
γ2 − 2

(
iuθ − 1

2
σ2u2

)) 1
2ν

K 1
ν

(
δ

√
γ2 − 2

(
iuθ − 1

2
σ2u2

))

=
δ

1
ν

Γ( 1
ν )2

1
ν−1

(
−2

(
iuθ − 1

2
σ2u2

)) 1
2ν

K 1
ν

(
δ

√
−2

(
iuθ − 1

2
σ2u2

))

=
2

1
2ν

(
1
ν − 1

) 1
2ν

Γ( 1
ν )2

1
ν−1

2
1
2ν

[
−
(
iuθ − 1

2
σ2u2

)] 1
2ν

K 1
ν

[√
−4

(
1

ν
− 1

)(
iuθ − 1

2
σ2u2

)]

=
2
(

1
ν − 1

) 1
2ν

Γ( 1
ν )

[
−
(
iuθ − 1

2
σ2u2

)] 1
2ν

K 1
ν

[√
−4

(
1

ν
− 1

)(
iuθ − 1

2
σ2u2

)]
,

which is the corresponding characteristic function under the t model, given in Equation (A.15).
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