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Abstract

In a recent review paper, Weron (2014) pinpoints several crucial challenges out-
standing in the area of electricity price forecasting. This research attempts to ad-
dress all of them by i) showing the importance of considering fundamental price
drivers in modeling, ii) developing new techniques for probabilistic (i.e. interval
or density) forecasting of electricity prices, iii) introducing an universal technique
for model comparison. We propose new regime-switching stochastic volatility
model with three regimes (negative jump, normal price, positive jump (spike))
where the transition matrix depends on explanatory variables. Bayesian inference
is explored in order to obtain predictive densities. The main focus of the paper is
on short-time density forecasting in Nord Pool intraday market. We show that the
proposed model outperforms several benchmark models at this task.
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1. Introduction

Electricity is a unique commodity, characterized by a high variability. It can-
not be stored and requires immediate delivery. The electricity end-user demand
shows high variability and strong weather and business cycle dependence. More-
over events like power plant outages or transmission grid (un)reliability and com-
plexity reduce predictability. The resulting electricity price series are character-
ized by strong seasonality at different levels (annual, weekly, daily and hourly).
However, the most distinct feature of electricity prices is very high volatility and
abrupt, short-lived and generally unanticipated extreme price changes known as
spikes, or jumps (see Serati et al., 2008; Janczura et al., 2013, among others).
Electricity prices from Nord Pool power market are also nonstationary (see Lisi
and Nan, 2014; Weron, 2014) and often have the long-memory property (see Hal-
drup and Nielsen, 2006a,b).

There is a large body of literature on the topic (see Weron (2014) for recent
review) showing that the need for realistic models of electricity price dynamics
capturing its unique characteristics and adequate derivatives pricing techniques
has not been fully satisfied. It is the aim of this paper address some of the cru-
cial challenges pointed out in (Weron, 2014) specifically the use of fundamental
price drivers in modeling and developing new tools for probabilistic forecasting
of electricity prices.

When building a model for electricity prices, one of the crucial steps is to
find an appropriate description of seasonal pattern. Moreover, electricity prices
present various forms of nonlinear dynamics, the crucial one being the strong de-
pendence of the variability of the series on its own past. Some nonlinearities of
these series are a nonconstant variance, and generally they are characterized by
the clustering of large shocks, or heteroskedasticity. It is well documented that
electricity prices exhibit volatility clustering (see Karakatsani and Bunn (2008)
among the others). The “spiky” character of electricity prices suggests that there
exists a nonlinear switching mechanism between normal and low/high states, or
regimes. The requirement of stochastic jump arrival probabilities directly leads
to regime switching models. Markov regime-switching (MS) models seem to be
a natural candidate for modeling such nonlinear and complex structure (see An-
dreasen and Dahlgren, 2006; Geman and Roncoroni, 2006; Handika et al., 2014;
Heydari and Siddiqui, 2010; Huisman and Mahieu, 2003; Kanamura and Ohashi,
2008; Kosater and Mosler, 2006; Mount et al., 2006, among others). MS models
are successfully applied by many researchers for electricity prices modeling (see
Janczura and Weron, 2010a; Haldrup and Nielsen, 2006b, among others).

2



This paper introduces a new regime-switching stochastic volatility model, with
a time-varying transition matrix that depends on explanatory variables. The core
of the model is an autoregressive process with stochastic volatility error term.
The main focus of this research is on short-time density forecasting of electricity
prices. Although important, this topic is however barely touched in the electricity
prices forecasting literature (see Weron, 2014). Serinaldi (2011) forecasts the
distribution of electricity prices using a GAMLSS approach, but computes and
discusses only predictive intervals. Huurman et al. (2012) consider GARCH-type
time-varying volatility models and find that models that augmented with weather
forecasts statistically outperform the ones without this information. They utilize
the probability integral transform scores of the realization of the variables with
respect to the forecast densities. Jónsson et al. (2014) develop a semi-parametric
methodology for generating densities of day-ahead electricity prices in Western
Denmark (Nord Pool).

The actuality and importance of electricity price forecasting is further evi-
denced by a special issue of the International Journal of Forecasting (Volume 32,
Issue 3, Pages 585-1102, July–September 2016) dedicated to that topic, and by
the energy forecasting competition organized by this journal. The competition
and the current status of the probabilistic energy forecasting research is summa-
rized in the paper of Hong et al. (2016). One of the presented approaches by
Maciejowska et al. (2016) introduces new methodology involving quantile regres-
sion to average large numbers of point forecasts and principal component analysis
(PCA) to extract the major factors driving the individual forecasts. Their approach
outperforms both of benchmarks autoregressive exogenous (ARX) model and the
quantile regression averaging (QRA) without PCA based on comprehensive eval-
uation with the unconditional coverage, the conditional coverage and the Winkler
score.

The paper explores Bayesian inference in order to construct predictive densi-
ties for future electricity prices. We introduce also the electricity price modeling
and forecasting literature a natural, universal method for model comparisons via
predictive Bayes factors. Bayesian approaches have been used in the context of
electricity prices modelling by several authors. Panagiotelis and Smith (2008)
use a first order vector autoregressive model with exogenous effects and a skew
t distributed disturbance for hourly Australian electricity spot prices. They use a
Bayesian Markov Chain Monte Carlo approach in order to construct the predictive
distribution of future spot prices. Smith (2010) proposes using Bayesian inference
for a Gaussian stochastic volatility model with periodic autoregressions (PAR) in
both the level and log-volatility process. They include demand and day types as
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exogenous explanatory variables in both the mean and log-volatility equations.
They confirm that there is a nonlinear relationship between demand and mean
prices and construct the predictive density of prices evaluated over a horizon of
one week. Our work can be seen as extending this study in two ways, with a
Markov-switching structure to flexibly accommodate such nonlinearities, and by
allowing for many more predictors.

The paper is divided into five sections. Section 1 introduces. Section 2 de-
scribes the data and the main electricity price drivers. Section 3 presents the
model and Bayesian inference. Section 4 shows the empirical and forecasting
results. Section 5 concludes.

2. Data

The data set comes from Nordic power exchange, Nord Pool owned by the
Nordic and Baltic transmission system operators, one of the leading power mar-
kets in Europe. We consider the information from two different markets within
Nord Pool - day-ahead auction market Elspot and intraday market Elbas.

There is about 380 companies from 20 countries that trade on the Nord Pool
Spot (Elspot) market including both producers and large consumers, for a trading
volume of approximately 500 terawatt hours in 2015. Within the Nord Pool Spot,
Elspot is the auction market for day-ahead electricity delivery. The Nord Pool
Spot web-based trading system enables participants to submit bids and offers for
each individual hour of the next day. Orders can be made between 08:00 and 12:00
a.m. Central European Time (CET). The aggregated buy and sell orders form
demand and supply curves for each delivery hour of the next day. The intersection
of the curves constitutes the system price for each hour (quoted per megawatt
hour, MWh). The hourly prices are announced to the market at 12:42 CET and
contracts are invoiced between buyers and sellers between 13:00 and 15:00. All
24 prices on day t+1 are determined on a given day t and released simultaneously.
A detailed review of the operation of the market is given in (Nord Pool, 2016).

The intraday market, Elbas, supplements the day-ahead market and helps se-
cure the necessary balance between supply and demand in the power market for
Northern Europe. The majority of the volume handled by Nord Pool is traded on
the day-ahead market. For the most part, the balance between supply and demand
is secured here. However, incidents may take place between the closing of the
day-ahead market at noon CET and delivery the next day. On the intraday market,
buyers and sellers can trade volumes close to real time to bring the market back in
balance. Elbas is a continuous market, and trading takes place every day around

4



the clock until one hour before delivery. Prices are set based on a first-come,
first-served principle, where best prices come first – highest buy price and lowest
sell price. The Elbas market is becoming increasingly important as the amount of
wind power entering the grid rises. Wind power is unpredictable by nature, and
imbalances between day-ahead contracts and produced volume often need to be
offset.

The data for the estimation period consist of a series of hourly observations
of electricity prices in two Nord Pool markets: Elspot and Elbas. The study is
conducted using hourly electricity prices for the whole area (system prices) from
Elspot market spott and corresponding hourly volume-weighted average prices
from Elbas market yt. The data covers the period from 1 January 2013 to 31
December 2014 (17520 observations). The focus of this research is on modeling
and forecasting of electricity prices from the Elbas market. We will present and
evaluate out-of-sample forecasts for 2 January 2015 (24 observations), the first
working day after the in-sample period.

Figure 1 presents the hourly time series of volume-weighted electricity prices
from Elbas market in the period 1/1/2013 till 31/12/2014. The prices exhibit typi-
cal characteristics, including seasonality and spikes.

Figure 1: Hourly electricity prices from Elbas power market, yt

1 Jan 2013 1 May 2013 1 Sep 2013 1 Jan 2014 1 May 2014 1 Sep 2014 1 Jan 2015
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In order to model the hourly volume-weighted average prices from Elbas mar-
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ket yt, we consider the following explanatory variables considered to be the main
price drivers in the Nord Pool power market:

• hourly Elspot electricity system price, spott,

• turnover at system price from Elspot market, loadt,

• water reservoir level, rest,

• heating degrees days, hddt,

• wind power production, windt,

• seasonal component, seast1.

In the Nord Pool electricity market, about 53% of power production is gen-
erated from hydropower reservoirs. The influence of water reservoir levels in
electricity prices at Nord Pool has been studied by (Gjolberg and Johnsen, 2001),
(Botterud et al., 2002), (Førsund and Hoel, 2004) and (von der Fehr et al., 2005).
The researchers conclude that hydropower reservoir levels are an important factor
that explains futures and spot prices. The ability of the Nordic power system to
store energy in hydro reservoirs causes less variation in the Nordic price structure,
than that of for example Germany. Inflow during summer and in periods with low
demand can be used in the winter. The data on hydropower reservoir levels are
collected from the first week of 2013 to the end of the last week of 2014. Reser-
voirs are taken as a percentage of the total hydropower capacity available in the
Nord Pool area. The reservoir levels and capacity data are from Norwegian Water
Resources and Energy Directorate (NVE), Svensk Energi (Swedenergy AB), and
the Finnish Environment Institute (SYKE). Reservoirs taken into account from
Sweden and Finland are those after their integration in the Nord Pool market. The
data is published on the weekly frequency2. The seasonality of reservoir levels
has a highly important influence on electricity spot prices.

Temperature is the main price driver in the Nordic countries. Cold tempera-
tures increase heat demand, since electricity is very much used for heating in the
Nordic countries. Colder temperatures usually increase prices because of higher

1The seasonality component in the electricity price series is captured by sine and cosine terms
taken with hourly, daily and weekly frequencies.

2The series of water reservoir levels is very regular. Therefore, the transformation from the
weekly to hourly frequency is done by simple linear interpolation.
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power demand. However, in special cases, combined heat and power plants where
heat is the primary product, the demand for the heat could trigger secondary elec-
tricity production and causes the prices to decrease. The behavior of weather
variables can also produce some predictable seasonal pattern in electricity prices.
The relationship between weather variables and electricity load and price has been
studied by many researchers. Li and Sailor (1995) and Sailor et al. (1998) show in
a few US states that temperature is the most significant weather variable explain-
ing electricity and gas demand. The influence of air temperature has also been
described by other authors, who obtained a significant explicative power in their
modeling; see, for example, (Peirson and Henley, 1994), (Peirson and Henley,
1998).Heating degree day (HDD) is a variable that shows the demand for energy
needed for heating. It is taken from measurements of outside air temperature. The
heating requirements for a specific structure at a specific place tend to be directly
proportional to the number of HDD at that location. In this study we will consider
average temperature measured on a daily basis in 13 Nordic cities (Oslo, Bergen,
Trondheim, Tromsø, Helsinki, Sodankyla, Vaasa, Tampere, Stockholm, Göteborg,
Östersund, Luleå and Copenhagen).

Wind power production is also an important electricity price driver. Due to
the fact that there is no fuel cost for production and unpredictability, additional
wind energy can lead to price decrease. This type of energy may in some cases
cause even negative prices in hours with low demand and additional supply. On
the other hand, when wind production falls short of expected values, it can trigger
high prices, both in the Day-Ahead and Intra-day markets.

Finally, Elspot electricity market is another significant source of information
about Elbas electricity prices. The same situation is in futures markets, where the
basis is the difference between futures price and the underlying spot price. Figure
2 presents hourly system prices from Elspot power market.
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Figure 2: Hourly electricity prices from Elspot market, spott
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3. Model

The Markov regime-switching (MS) model allows for temporal dependence
within the regimes, and in particular, for mean reversion. As the latter is a char-
acteristic feature of electricity prices, it is important to have a model that captures
this phenomenon. However, several modeling questions have to be addressed to
build a proper MS model (see Janczura and Weron, 2010a).

First, the number of regimes has to be chosen. The important advantage of
the MS models over the alternatives is no need for explicitly specifying threshold
variable and level for the regimes, and therefore they are preferred for modeling
risk purposes. There is no fundamental reason for considering specific number of
regimes for electricity prices modeling (see Janczura and Weron (2010a)). How-
ever, almost all published papers consider only 2-regime models due to the com-
putational convenience. Additional to the base regime, a spike (or excited) regime
was introduced to capture extreme price behavior. Karakatsani and Bunn (2008)
introduced third regime for capturing the most extreme prices. Also, the exis-
tence of an additional ”down-spike” or ”drop” regime can by justified for many
of the very low prices. This research considers three regimes (down-spike (drop),
normal/base and spike) Markov regime-switching stochastic-volatility model for
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electricity prices. We also introduce a data-driven mechanism of switching be-
tween different regimes in the form of an ordered probit model. Our approach
enables to extend the number of regimes easily.

Secondly, the model defining the price dynamics in each of the regimes has
to be selected. The base regime is usually modeled by a mean-reverting AR
(see Ethier and Mount (1998), Deng (1999) among others) or diffusion model
(for reviews see Huisman, 2009; Janczura and Weron, 2010b), which is some-
times heteroscedastic (Janczura and Weron, 2009). For the spike regime(s), on
the other hand, a number of different specifications have been suggested in the
literature, ranging from mean-reverting diffusions (Karakatsani and Bunn, 2008),
to Gaussian (Huisman and de Jong, 2003; Liebl, 2013), lognormal (Weron et al.,
2004), (Bierbrauer et al., 2004), exponential (Bierbrauer et al., 2007), heavy tailed
(Weron, 2009) and non-parametric (Eichler and Türk, 2013) random variables,
to mean-reverting diffusions with Poisson jumps (Arvesen et al., 2013; de Jong,
2006; Keles et al., 2012; Mari, 2008). One of the advantages of the regime-
switching framework is that we can explicitly model the short-lived characteristics
of power spike. We consider ARX-SV models for each of the regimes.

Finally, the dependence between the regimes has to be decided. Dependent
regimes with the same random noise process in all regimes (but different parame-
ters) are computationally less demanding that independent ones. However, inde-
pendent regimes model enables greater flexibility and seems to be a natural choice
for a process which significantly changes its dynamics. We follow the second
mentioned approach. An empirical comparison in the paper (Janczura and Weron,
2010a) shows that the best structure is that of an independent spike three-regime
model with time-varying transition probabilities, heteroscedastic diffusion-type
base regime dynamics and shifted spike regime distributions.

We propose a model which capture more accurately each of the characteristics
of the best structure model considered in Janczura and Weron (2010a) . In this
section we provide the details on Markov-switching stochastic volatility model
for electricity prices. We first introduce the stochastic volatility model that exists
within each of the three regimes (negative jump, regular, positive jump), followed
by a description of the transition dynamics between the regimes. Finally, we de-
rive a Gibbs sampler that we use for parameter estimation and forecasting.

3.1. Stochastic volatility model
Denote the (scalar) price yt. Any exogenous observables will be dated t for

convenience, but it is assumed that they are known at time t−1, when the forecast
is being made. To avoid any potential scaling issues, all variables including the
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regressand are studentized over the estimation window. The latent regime is de-
noted Rt ∈ {1, 2, 3}, which correspond to the negative jump, regular, and positive
jump regimes, respectively. All parameters (α, β, γ, δ, τ), which are introduced
below, are collected in θ.

We specify our stochastic volatility model as

yt |θ, yt−1, . . . , yt−p, σt, Rt ∼ N (x′tβRt , σ
2
t ) ,

log σt |θ, σt−1, . . . , σt−q, Rt ∼ N
(
z′tγRt , τ

−1
Rt

)
.

The regressors in the mean equation are x′t = (1, yt−1, . . . , yt−p, spott, seas
′
t), and

in the volatility equation, z′t = (1, log σt−1, . . . , log σt−q, spott, seas
′
t). We set the

lag lengths to p = q = 48, so our price process has a two-day memory.
For notational simplicity, introduce T × 1 vectors y, σ, and log σ, the T × N

matrix X , and the T ×M matrix Z. It will also be convenient to collect all Tr
observations that belong to regime r in separate vectors and matrices, for r =
1, 2, 3. The Tr × 1 vectors yr, σr, and log σr, the Tr × N matrices Xr, and the
Tr ×M matrices Zr contain only those rows of the original vectors and matrices
with Rt = r. Finally, let Σ = diag (σ2

t ) be a T × T matrix, and create diagonal
Tr × Tr matrices Σr similarly. We may then write our stochastic volatility model
as

yr |θ, σr, R ∼ N (Xrβr,Σr) , log σr |θ, R ∼ N (Zrγr, τ
−1
r ITr) , for r = 1, 2, 3.

We use a standard set of priors, which are independent across regimes. For
each regime r, we specify p (βr) asN (0, λ−1IN), p (γr) asN (0, µ−1IM), and the
uninformative p (τr) ∝ τ−1r . Preliminary experiments suggest that our results are
largely insensitive to the choice of hyperparameters λ and µ; we use λ = µ = 1
in our application. Finally, a prior needs to be specified for the pre-sample volatil-
ities σ1−q, . . . , σ0. The standard approach of using the unconditional distribution
implied by τ and the autoregressive parameters in γ, as advocated by Jacquier
et al. (2002), is not feasible in our setup, since we are not imposing stationarity
on the volatility process. Instead, we follow de Jong and Shephard (1995) and set
log σt |Rt ∼ N

(
0, τ−1Rt

)
independently for t = 1− q, . . . , 0.

3.2. State dynamics
We model the regime Rt according to a hidden Markov process, where each

state transition is governed by an ordered probit model. Our specification is an
extension of the two-regime model in Filardo and Gordon (1998). Specifically,
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the transition probabilities P [Rt+1 |Rt = r, θ ] are given implicitly by

Rt+1 =


1 if w′tδr + εt < 0,
2 if 0 ≤ w′tδr + εt ≤ αr,
3 if αr < w′tδr + εt

where εt is i.i.d. N (0, 1), w′t = (spott, rest, loadt, hddt, windt), and the param-
eters δr and αr may again be different for each regime r. Note that no generality
is lost by fixing the mean and variance of εt, as well as the threshold between the
first two regimes; these restrictions serve to identify the model.

To simplify notation, we write R∗t+1 = w′tδRt + εt. We create regime-specific
Tr×K matricesWr and Tr×1 vectorsR∗r as above, so thatR∗r |θ ∼ N (Wrδr, ITr),
for r = 1, 2, 3. In particular, R∗r includes R∗t+1 if Rt = r; the r-th ordered probit
model describes all transitions from regime r to any of the three regimes.

As in the mean and volatility equations, the regression coefficients in these
probit models are also given independent priors δr ∼ N (0, ν−1IK), where we
set ν = 1 after finding that the results are not very sensitive to this choice. As
in Albert and Chib (1993), the regime thresholds αr have uninformative priors,
uniform over (0,∞). Finally, pre-sample states R1−q, . . . , R0 are required in the
prior specification for the volatilities. We specify P [R1−q = 1] = P [R1−q = 3] =
0.05 and P [R1−q = 2] = 0.90, and the ordered probit model then automatically
implies a prior for R2−q, . . . , R0.

3.3. Gibbs sampler
Because of its modular nature, our model lends itself well to estimation using

a Gibbs sampler with data augmentation. We can obtain draws from all required
conditional posteriors analytically. Standard results (Koop, 2003) apply for all
regression coefficients; for r = 1, 2, 3, we may draw

• βr from N
(

(X ′rΣ
−1
r Xr + λIN)

−1
X ′rΣ

−1
r yr, (X

′
rΣ
−1
r Xr + λIN)

−1
)

,

• γr from N
(
(τrZ

′
rZr + µIM)−1 (τrZ

′
r log σr) , (τrZ

′
rZr + µIM)−1

)
, and

• δr from N
(
(W ′

rWr + νIK)−1W ′
rR
∗
r , (W

′
rWr + νIK)−1

)
.

The conditional posterior for each τr is the usual gamma distribution, with shape
parameter Tr/2 and scale parameter 2

/[
(log σr − Zrγr)

′ (log σr − Zrγr)
]

.
The conditional posterior for the latent volatilities is nonstandard, but an aux-

iliary variable vt can be introduced to obtain draws analytically. For t = 1, . . . , T ,
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define vt to be (yt − x′tβRt)
2 /(2σ2

t ) plus a draw from the exponential distribution
with mean one, and then draw log σt from N

(
z′tγRt − τ−1Rt

, τ−1Rt

)
, truncated to the

interval
(
1
2

log
(
(yt − x′tβRt)

2 /(2vt)
)
,∞
)
; for further details see Damien et al.

(1999).
Sampling the state dynamics Rt is done along the same lines as in Filardo and

Gordon (1998). For t = 1− q, 2− q, . . . , T , the conditional posterior distribution
of Rt has support {1, 2, 3}, with probability for state r proportional to the product
p (Rt = r |Rt−1, θ )·p (Rt+1 |Rt = r, θ )·p (log σt |log σt−1, . . . , log σt−q, θ, Rt = r )·
p (yt |σt, yt−1, . . . , yt−p, θ, Rt = r ). The factors in this expression can be explic-
itly computed as

p (Rt = r |Rt−1, θ ) =


Φ
(
−w′t−1δRt−1

)
if r = 1,

Φ
(
αRt−1 − w′t−1δRt−1

)
− Φ

(
−w′t−1δRt−1

)
if r = 2,

1− Φ
(
αRt−1 − w′t−1δRt−1

)
if r = 3,

p (Rt+1 |Rt = r, θ ) =


Φ (−w′tδr) if Rt+1 = 1,
Φ (αr − w′tδr)− Φ (−w′tδr) if Rt+1 = 2,
1− Φ (αr − w′tδr) if Rt+1 = 3,

p (log σt |log σt−1, . . . , log σt−q, θ, Rt = r ) = φ (log σt; z
′
tγr, τ

−1
r ) ,

p (yt |σt, yt−1, . . . , yt−p, θ, Rt = r ) = φ (yt;x
′
tβr, σ

2
t ) ,

where Φ is the standard normal CDF, and φ is the normal PDF with specified mean
and variance.

Finally, the sampling distributions for the latent R∗t+1 as well as the thresh-
olds αr were obtained by Albert and Chib (1993). For t = 1, 2, . . . , T , the latent
R∗t+1 can be drawn from N (w′tδRt , 1), truncated to the correct interval, which is
(−∞, 0) if Rt+1 = 1, (0, αRt) if Rt+1 = 2, and (αRt ,∞) if Rt+1 = 3. The condi-
tional posterior for αr is uniform with lower bound max

{
max

{
R∗t+1 : Rt = r and Rt+1 = 2

}
, 0
}

and upper bound min
{
R∗t+1 : Rt = r and Rt+1 = 3

}
, for r = 1, 2, 3.

3.4. Density forecasting
We can obtain draws from the one-step-ahead predictive density within the

Gibbs sampler. At each step d = 1, 2, . . . , D, we draw R
∗ (d)
T+1 ∼ N

(
w′T δ

(d)

R
(d)
T

, 1

)
to find R(d)

T+1, which is 1 if R∗ (d)T+1 < 0, 2 if 0 ≤ R
∗ (d)
T+1 ≤ α

(d)

R
(d)
T

, and 3 otherwise.
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Finally, we draw log σ
(d)
T+1 ∼ N

(
z′T+1γ

(d)

R
(d)
T+1

, τ
(d)−1
R

(d)
t+1

)
, and use it to draw y

(d)
T+1 ∼

N
(
x′T+1β

(d)

R
(d)
T+1

, σ
(d) 2
T+1

)
. The empirical distribution formed by these draws after

discarding D0 initial burn-in draws, F (c) =
1

D −D0

D∑
d=D0+1

1
{
y
(d)
T+1 ≤ c

}
, ap-

proximates the CDF of yT+1 |y . A kernel density estimate of the corresponding
PDF is used to visualize this distribution in the Results section below.

In our empirical application we will also be interested in h-step-ahead fore-
casts for h = 2, 3, . . . , 24; that is, density forecasts for every hour of the next day.
We may recursively obtain draws of each yT+h, using the same procedure as out-
lined for h = 1 above. Most exogenous regressors in xt, zt, and wt are available
one day ahead, and highly accurate forecasts are available for the others. For the
endogenousR∗t ,Rt, σt, and yt that are needed for t > T , we may simply substitute
the forecasts that were made at shorter horizons. This procedure is justified by the
standard decomposition

p (yT+1, yT+2, . . . , yT+24 |y ) = p (yT+1 |y )·p (yT+2 |yT+1, y )· · · · ·p (yT+24 |yT+23, . . . , yT+1, y ) .

3.5. Forecast evaluation
We evaluate the quality of our density forecasts using predictive Bayes fac-

tors, as suggested by Geweke and Amisano (2010). The predictive Bayes factor
comparing two competing models is given by the ratio of the predictive densities
implied by these models, evaluated at the realized prices. A number greater than
one indicates a preference for the model in the numerator.

For one-step-ahead forecasts, we may approximate the predictive density eval-
uated at the realized price yT+1 using

p (yT+1 |y ) =

∫ ∫ ∫
p (yT+1 |y, θ, σT+1, RT+1 ) dRT+1dσT+1dθ ≈

1

D −D0

D∑
d=D0+1

φ

(
yT+1;x

′
T+1β

(d)

R
(d)
T+1

, σ
(d) 2
T+1

)
.

A similar iterative procedure as outlined above for density forecasting can then be
used to approximate p (yT+2 |yT+1, y ) , . . . , p (yT+24 |yT+23, . . . , yT+1, y ), except
that now realized rather than simulated values of yt need to be substituted into xt,
for t > T . Finally, the joint predictive density is again given by

p (yT+1, yT+2, . . . , yT+24 |y ) = p (yT+1 |y )·p (yT+2 |yT+1, y )· · · · ·p (yT+24 |yT+23, . . . , yT+1, y ) .
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4. Results

We study the hourly volume-weighted electricity prices from Elbas power
market in order to understand the data generating mechanism and examine the
proposed model. For that reason we consider four model specifications: the ba-
sic autoregressive process with explanatory variables (ARX), the autoregressive
model with stochastic volatility error and explanatory variables (ARX-SV), the
three-state Markov regime-switching model (MS-ARX) and our proposed three-
state Markov regime-switching model with stochastic volatility (MS-ARX-SV).
Formal Bayesian model comparison in terms of the predictive adequacy is mea-
sured by predictive Bayes factors.

Table 1: The model specifications considered in the empirical study.

Mnemonic Restrictions on the model introduced in Section 3
ARX no regime switching (Rt = 2 for all t), no stochastic volatility (σ2

t = σ2 for all t)
ARX-SV no regime switching (Rt = 2 for all t)
MS-ARX no stochastic volatility (σ2

t = σ2
Rt

for all t)
MS-ARX-SV no restrictions

4.1. Full-sample results
As a preliminary check, we run the classical neural network test for neglected

nonlinearity introduced by Lee et al. (1993) on the ARX model in each of our 363
estimation windows. The null hypothesis of linearity is rejected in the vast major-
ity of cases, as expected based on the literature surveyed in Section 1. Specifically,
nonrejection at the 5% level occurs on only 39 days, all of which are in the last 2.5
months of the year. Moving to the 10% level, only one nonrejection remains. We
conclude that the in-sample evidence is strongly in favor of nonlinear modeling.

Below we present out-of-sample results obtained within four model specifi-
cations: ARX, ARX-SV, MS-ARX and MS-ARX-SV (see Table 1), estimated
for hourly electricity prices (see Figure 1) for every hour of 2015.3 In each case
posterior analysis is based on 15000 MCMC samples from the relevant joint pos-
terior, preceded by 5000 burnin draws. Calculations have been carried out with
the authors’ own codes run under Matlab. MCMC convergence is deemed sat-
isfactory, as measured using standardized CUSUM plots (see Yu and Mykland,

3A preliminary analysis of the results did not reveal any obvious daily, weekly, or annual
patterns in model performance. For this reason, only aggregate results are reported here.
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1998), which are not reported here but may be obtained from the authors upon
request.

We report on the model comparison first. Relevant quantities, including the
predictive density values and predictive Bayes factors, are displayed in Table 2. It
is clear that all three nonlinear models provide a better out-of-sample forecasting
performance than the simple linear ARX model. To quantify the performance
differences, we follow the interpretation of Bayes factors suggested by Kass and
Raftery (1995): a Bayes factor greater than three provides “positive” evidence of
the outperformance, and the evidence is “strong” for Bayes factors greater than
twenty and “very strong” beyond 150. Thus, there is very strong evidence that
MS-ARX-SV outperforms the simple ARX benchmark, since exp (1219.1797) ≈
3× 10529. In fact, the same could be said for every pairwise model comparison in
this table; the evidence in favor of the presence of both stochastic volatility (ARX-
SV versus ARX) and especially regime switching (MS-ARX versus ARX) is very
strong. We conclude that the overall forecasting performance of the MS-ARX,
ARX-SV, and MS-ARX-SV models is much better than that of the ARX model.

However, our proposed MS-ARX-SV model is outperformed by each of the
simpler nonlinear MS-ARX and ARX-SV models, which are special cases of it.
Our interpretation of this result is that regime switching and stochastic volatility
are both good ideas for modeling the electricity prices, since each of these features
individually strongly enhances the performance of a pure ARX model. Joining
both of these ideas, on the other hand, still requires some further investigation.
Perhaps our highly parametrized specification is simply asking to much from the
data; perhaps three regimes are not needed for this particular data set and two
would be sufficient. We are currently in the process of assessing these issues.

Table 2: Predictive performance measures in the empirical study.

Log predictive Bayes factor against. . .

Model Predictive log density MS-ARX-SV MS-ARX ARX-SV ARX
MS-ARX-SV -4571.9895 2242.4402 1565.7482 -1219.1797
MS-ARX -2329.5493 -676.6921 -3461.6199
ARX-SV -3006.2413 -2784.9278
ARX -5791.1691
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4.2. Subsample results
In order to better understand the differences in performance between the four

models under consideration, as well as to highlight the ease of formally obtaining
predictive densities within our framework, we repeat the analysis that we just
performed restricted to four specific days in 2015. These days were selected to be
the ones where each of the four models performed best relative to its competitors:
Monday 12 January (ARX performs best on this day), Sunday 18 January (MS-
ARX-SV), Sunday 10 May (MS-ARX), and Tuesday 25 August (ARX-SV).

Tables 3–6 below are analogous to the full-sample Table 2. We observe that,
except in the special case where ARX performs best (Table 3), this simple linear
benchmark performs far worse than all nonlinear competitors (Tables 4–6). When
our full MS-ARX-SV model performs best (Table 4), it does so by a very wide
margin; note that the smallest Bayes factor is exp (12.3544) ≈ 2× 105 already.

This leaves us with the intermediate cases to analyze, where either Markov
switching turned out to be useful for forecasting but stochastic volatility did not,
or vice versa. Table 5 presents a case in which MS-ARX strongly outperforms
all other models, and we observe that the MS-ARX-SV model is still “the best of
the rest”. That is, the full, highly-parametric model is preferred over the ARX-SV
model, which gets the nature of the nonlinearity wrong in this instance. In the op-
posite case (Table 6), where ARX-SV is the preferred model, the other nonlinear
models MS-ARX-SV and MS-ARX are virtually indistinguishable, with a predic-
tive Bayes factor of exp (0.8272) ≈ 2. These results confirm our intuition based
on the full-sample results: leaving out Markov switching when we need it has a
larger negative impact on forecast accuracy than leaving out stochastic volatility
when we need it.

Table 3: Predictive performance measures in the empirical study, Monday 12 January
2015.

Log predictive Bayes factor against. . .

Model Predictive log density MS-ARX-SV MS-ARX ARX-SV ARX
MS-ARX-SV -62.7767 33.2098 27.9920 38.0507
MS-ARX -29.5669 -5.2178 4.8409
ARX-SV -34.7847 10.0587
ARX -24.7260
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Table 4: Predictive performance measures in the empirical study, Sunday 18 January 2015.

Log predictive Bayes factor against. . .

Model Predictive log density MS-ARX-SV MS-ARX ARX-SV ARX
MS-ARX-SV -1.2465 -12.3544 -15.7705 -20.9411
MS-ARX -13.6009 -3.4161 -8.5867
ARX-SV -17.0169 -5.1706
ARX -22.1875

Table 5: Predictive performance measures in the empirical study, Sunday 10 May 2015.

Log predictive Bayes factor against. . .

Model Predictive log density MS-ARX-SV MS-ARX ARX-SV ARX
MS-ARX-SV -83.2826 39.4483 -7.5094 -84.2646
MS-ARX -43.8343 -46.9577 -123.7129
ARX-SV -90.7920 -76.7552
ARX -167.5473

Table 6: Predictive performance measures in the empirical study, Tuesday 25 August 2015.

Log predictive Bayes factor against. . .

Model Predictive log density MS-ARX-SV MS-ARX ARX-SV ARX
MS-ARX-SV -11.0719 0.8272 22.3026 -2.8123
MS-ARX -10.2447 21.4755 -3.6395
ARX-SV 11.2308 -25.1150
ARX -13.8842

To further investigate what drives these results, Figures 3–6 show the predic-
tive densities obtained for two selected hours on these four days, one in the after-
noon (h = 15) and one in the evening (h = 21). The ex-post realized price is also
included in each of these figures. 12 January (Figure 3) was a relatively unevent-
ful day, for which the linear ARX model was “good enough” and its nonlinear
extensions turned out to be needless complications.

The MS-ARX-SV model performed best on 18 January (Figure 4). It appears
that the models without a Markov switching component provide forecasts that are
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centered at the wrong location on this day. Clearly, allowing for multiple regimes
provides a safeguard against such problems. The price fluctuated considerably on
this day, a fact that is picked up by the relatively flat predictive densities produced
by the stochastic volatility models.

A large negative jump occurred in the afternoon of 10 May (Figure 5), which
explains the good performance of Markov switching models on this date. Finally,
25 August (Figure 6) saw large price fluctuations but no jumps, so that stochastic
volatility was an important model component on that day.
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Figure 3: Predictive densities for two selected hours on Monday 12 January 2015.
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Figure 4: Predictive densities for two selected hours on Sunday 18 January 2015.
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Figure 5: Predictive densities for two selected hours on Sunday 10 May 2015.
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Figure 6: Predictive densities for two selected hours on Tuesday 25 August 2015.

5. Conclusions

The goal of this research was to address fundamental questions within the area
of forecasting electricity prices. We proposed a new regime-switching stochastic
volatility model with three regimes which takes into account fundamental price
drivers. We show how the predictive densities of future electricity prices can be
formally constructed via Bayesian inference. Moreover, we introduced a univer-
sal method (within the Bayesian framework) for model comparisons, predictive
Bayes factors, to the electricity price forecasting literature. Based on this mea-
sure, we showed that the Markov switching structure and the stochastic volatility
component of our model both contribute to its improved forecasting performance

19



in terms of short-time density forecasting in the Nord Pool intraday market, rela-
tive to a model that lacks such features.

Both Markov switching models and stochastic volatility models provide very
good forecasts on some occasions but poor ones on some others, and our sub-
sample analysis suggests that there may be a complementarity between these two
features. Since our MS-ARX-SV model nests both types of models, it strikes us as
a useful contribution to the literature. However, more research is needed in order
to obtain a desirable empirical performance from this rich model. One possible
way to reduce the dimensionality of its parameter space would be to simplify the
volatility dynamics, e.g. γRt = γ for each regime.

Another avenue, which appears more promising in our view, is to go back
to models with two rather than three regimes. Most evidence in favor of the exis-
tence of a third regime (Karakatsani and Bunn, 2008; Janczura and Weron, 2010a)
is several years old by now. As integrated energy markets have matured, a “spike”
regime may no longer be necessary to describe the dynamics in electricity prices.
Tentatively, visual inspection of Figure 1 confirms this intuition, but a more thor-
ough investigation is required.
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D.J. Sailor, J.N. Rosen, and J.R. Muñoz. Natural gas consumption and climate:
A comprehensive set of predictive state-level models for the United States. En-
ergy, 23:91–103, 1998.

M. Serati, M. Manera, and M. Plotegher. Modeling electricity prices: From the
state of the art to a draft of a new proposal. Working paper, Fondazione Eni
Enrico Mattei, Milan, 2008.

F. Serinaldi. Distributional modeling and short-term forecasting of electricity
prices by generalized additive models for location, scale and shape. Energy
Economics, 33:1216–1226, 2011.

M.S. Smith. Bayesian inference for a periodic stochastic volatility model of in-
traday electricity prices. In T. Kneib and G. Tutz, editors, Statistical Modelling
and Regression Structures: Festschrift in Honour of Ludwig Fahrmeir, pages
353–376. Physica-Verlag, Heidelberg, 2010.

N.-H.M. von der Fehr, E.S. Amundsen, and L. Bergman. The Nordic market:
Signs of stress? The Energy Journal, 26:71–98, 2005.

R. Weron. Heavy-tails and regime-switching in electricity prices. Mathematical
Methods of Operations Research, 69:457–473, 2009.

R. Weron. Electricity price forecasting: A review of the state-of-the-art with a look
into the future. International Journal of Forecasting, 30:1030–1081, 2014.

R. Weron, M. Bierbrauer, and S. Trück. Modeling electricity prices: Jump diffu-
sion and regime switching. Physica A, 336:39–48, 2004.

B. Yu and P. Mykland. Looking at Markov samplers through CUSUM path plots:
A simple diagnostic idea. Statistics and Computing, 8:275–286, 1998.

25



Research Papers 
2016 

 
 

 

 

 

2016-19: Tim Bollerslev, Jia Li and Yuan Xue: Volume, Volatility and Public News 
Announcements 

2016-20: Andrea Barletta, Paolo Santucci de Magistris and Francesco Violante: 
Retrieving Risk-Neutral Densities Embedded in VIX Options: a Non-Structural 
Approach 

2016-21: Mikkel Bennedsen: Semiparametric inference on the fractal index of Gaussian 
and conditionally Gaussian time series data 

2016-22: Søren Johansen and Morten Ørregaard Nielsen: The cointegrated vector 
autoregressive model with general deterministic terms 

2016-23: Yunus Emre Ergemen and Carlos Vladimir Rodríguez-Caballero: A Dynamic 
Multi-Level Factor Model with Long-Range Dependence 

2016-24: Shin Kanaya: Convergence rates of sums of α-mixing triangular arrays: with 
an application to non-parametric drift function 

2016-25: Gustavo Fruet Dias, Marcelo Fernandes and Cristina M. Scherrer: Improving 
on daily measures of price discovery 

2016-26: Martin M. Andreasen, Tom Engsted, Stig V. Møller and Magnus Sander: Bond 
Market Asymmetries across Recessions and Expansions: New Evidence on Risk 
Premia 

2016-27: Kim Christensen, Ulrich Hounyo and Mark Podolskij: Testing for 
heteroscedasticity in jumpy and noisy high-frequency data: A resampling 
approach 

2016-28: Kim Christensen, Roel Oomen and Roberto Renò: The Drift Burst Hypothesis  

2016-29: Hossein Asgharian, Charlotte Christiansen, Rangan Gupta and Ai Jun Hou: 
Effects of Economic Policy Uncertainty Shocks on the Long-Run US-UK Stock 
Market Correlation 

2016-30: Morten Ørregaard Nielsen and Sergei S. Shibaev: Forecasting daily political 
opinion polls using the fractionally cointegrated VAR model 

2016-31: Carlos Vladimir Rodríguez-Caballero: Panel Data with Cross-Sectional 
Dependence Characterized by a Multi-Level Factor Structure 

2016-32: Lasse Bork, Stig V. Møller and Thomas Q. Pedersen: A New Index of Housing 
Sentiment 

2016-33: Joachim Lebovits and Mark Podolskij: Estimation of the global regularity of a 
multifractional Brownian motion 

2017-01: Nektarios Aslanidis, Charlotte Christiansen and Andrea Cipollini: Predicting 
Bond Betas using Macro-Finance Variables 

2017-02: Giuseppe Cavaliere, Morten Ørregaard Nielsen and Robert Taylor: Quasi-
Maximum Likelihood Estimation and Bootstrap Inference in Fractional Time 
Series Models with Heteroskedasticity of Unknown Form 

2017-03: Peter Exterkate and Oskar Knapik: A regime-switching stochastic volatility 
model for forecasting electricity prices 


	201702_Coverpage_14022017
	2017 – 02

	201702_Original_Peter Exerkate_14022017
	Introduction
	Data
	Model
	Stochastic volatility model
	State dynamics
	Gibbs sampler
	Density forecasting
	Forecast evaluation

	Results
	Full-sample results
	Subsample results

	Conclusions


