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Abstract

The El Niño Southern Oscillation (ENSO) affects weather around the globe, particularly in
regions where developing countries typically lie. These countries are known to be most vulnerable
to weather anomalies, and ENSO thereby has the potential to influence their economic growth.
In this study, we investigate the effect of ENSO on economic growth in 69 developing countries,
using annual data from 1961 to 2015. We find regime–dependent nonlinearity in the growth
response to ENSO shocks. An El Niño event, equivalent to a 1◦C deviation in sea–surface
temperatures in the Niño3.4 region of the equatorial Pacific, results in one–to–two percent
annual growth reduction during the El Niño regime, but the effect is absent during the La Niña
regime. In addition, we find that the effect of El Niño is twice–as–large in the tropics relative
to temperate areas, and particularly pronounced in Africa and Asia-Pacific. The findings of
this study have two important implications. From the modeling standpoint, we find that the
growth impacts of ENSO shocks are nonlinear, and vary across regions and climatic zones. From
the policy-making standpoint, our findings suggest opportunities for short-term adjustments to
climate shock management and international aid programs, depending on the existing state and
the intermediate-term patterns of the ENSO cycle.
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1 Introduction

Throughout the course of human history, climate has played an important role in the development

of nations and the demise of civilizations (Acemoglu et al., 2001; Haug et al., 2003; Tsonis et al.,

2010). The relationship between weather and socio-economic variables is intrinsic (Raddatz, 2007;

Noy, 2009; Burke et al., 2015a), and is particularly evident in countries that are located closer to

the equator. This is, in part, due to more frequent weather extremes in this geographic region

(Masters and McMillan, 2001; Sachs, 2001; Hsiang, 2010; Dell et al., 2012, 2014), but also because

these countries tend to be more dependent on sectors that are climate–sensitive (e.g., agriculture

or tourism), and in general are poor “shock absorbers” (Loayza et al., 2007; Noy, 2009).

Incidentally, a climate phenomenon known as the El Niño Southern Oscillation (ENSO) in-

fluences weather patterns in the tropics, more so than in the temperate regions. ENSO is the

greatest source of inter–annual climate variability, owing to its strong presence in the Pacific and

transmissions across the world (Zebiak et al., 2015). These transmissions—also referred to as tele-

connections—relate the climatic conditions in the Pacific with weather anomalies at large distances

(see Appendix Figure A1 for illustration of ENSO–induced global weather anomalies). The two

extreme phases of this climate phenomenon are known as El Niño (the warm phase) and La Niña

(the cool phase), which re-occur irregularly every three–to–seven years to form the ENSO cycle.

El Niño events are characterized by weakening trade winds, which typically cause droughts in Sout-

heast Asia and Oceania and wetter–than–usual conditions over the western tier of the Americas.

The trade winds intensify during La Niña events, resulting in weather conditions that are opposite

to those experienced during El Niño events. ENSO teleconnections, moreover, extend beyond the

Pacific region, and influence weather in parts of Africa, Asia, and the eastern tier of the Americas.

There are multiple channels through which ENSO may affect economic growth, and reasons to

believe the impact is more significant in the developing world. ENSO causes anomalous temperatu-

res and precipitation, which can manifest into extended episodes of droughts or floods around the

globe (Dilley and Heyman, 1995; Iizumi et al., 2014; Hsiang and Meng, 2015). To the extent that

weather is the most important factor in agricultural production (Lobell and Field, 2007; Lobell

et al., 2011), the obvious link in the ENSO–growth relationship is agriculture, which remains to
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be a nontrivial component of economies in the developing world. In addition, and related to the

aforementioned, ENSO influences real prices of some key primary commodity groups (Brunner,

2002; Ubilava and Holt, 2013; Cashin et al., 2017; Ubilava, 2017), and thus can impact the terms

of trade of developing countries. Both commodity price inflation and terms of trade are important

factors in economic growth (Barro, 1996). Furthermore, a combination of the food shortage and

price spikes can increase an incidence of protests and riots in developing countries that rely on

imports (Bellemare, 2015; Hendrix and Haggard, 2015), while commodity price downturns may

facilitate civil conflicts in the commodity–exporting regions (Brückner and Ciccone, 2010). Civil

conflicts and political instability, which may be attributed to ENSO shocks (Hsiang et al., 2011),

can also slow down economic growth (Barro, 1991). To summarize, agricultural production is not

be the only link through which ENSO can impact economic growth. The corollary is that economic

growth in a region can be linked to ENSO shocks, even if they do not directly influence weather

patterns in this region. While there can be multiple direct and indirect channels that may relate

ENSO events to economic growth, the overarching goal of this study is to examine the overall

impact of this climate phenomenon on growth in developing countries.

To date, several studies have attempted to unveil causal linkages between ENSO and economic

growth. Brunner (2002) examined the effect of the ENSO anomalies on international commodity

prices and economic indicators of the G7 countries, finding up to one–half of a percentage point

positive impact on aggregated GDP growth in response to an El Niño shock. Berry and Okulicz-

Kozaryn (2008) studied U.S. inflation and GDP growth responses to ENSO fluctuations, finding no

evidence of causality; thus prompting the conclusion that the ENSO signals are either lost in the

intricacies of the large economy or are simply absent. Laosuthi and Selover (2007), in accordance

with portfolio theory, hypothesized that less diversified or geographically smaller countries would

be more likely to exhibit a greater response to ENSO–induced climatic shocks. They found little

evidence of ENSO being a significant driver of business cycles during 1950–2000 in a majority

of considered countries—notable exceptions include South Africa, Australia and, to some extent,

India and Malaysia. Most recently, Cashin et al. (2017) examined the impact of El Niño events on

macroeconomic variables of 21 individual countries/regions between 1979 and 2013. In accord with
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the aforementioned studies, they found that directly affected countries, such as Australia, Chile,

Indonesia, India, Japan, New Zealand and South Africa, experience a brief slowdown in economic

activity in response to El Niño shocks, while several other developed economies, such as the United

States and European region, manifest a growth–enhancing response.

While the previous studies have made notable contributions to the climate–growth literature,

particularly in relation to the ENSO cycle, more work needs to be done to further unveil existing

linkages between this climate phenomenon and growth in the developing world. The present study

contributes to the existing body of research in several directions. First of all, we analyze the ENSO

effect in 69 developing countries in Africa, Asia and the Pacific, and Central and South America—a

vast majority of which have yet to be studied in this context. Second, we allow for heterogeneous

effect of ENSO across regions. That is, the economic importance and statistical significance of the

ENSO effect can vary across regions, and this study allows for such variation. Finally, in this study

we emphasize the potentially asymmetric nature of positive and negative ENSO shocks. We argue

that El Niño and La Niña events of equivalent scale need not cause a growth response of opposite

sign and similar magnitude. For example, the downside impact of a dry event is likely to be larger

than the upside impact of a wet event. In fact, wet events themselves can be damaging to growth

because of the increased likelihood of flooding and storm activity. The modeling framework of this

study allows for such nonlinearity in the ENSO–growth relationship.

Using an (unbalanced) panel of annual data spanning the 1961–2015 period, this study finds

that ENSO events have heterogeneous and nonlinear impacts on per capita GDP growth rates (this

is what we refer to as economic growth in this study) in developing countries. We find evidence

of heterogeneity in the impact of ENSO shocks across climatic zones as well as continents. The

effect of ENSO events is approximately twice–as–large in the tropics compared to the temperate

climatic zones. ENSO events detract from the economic growth of developing countries in Africa

and Asia-Pacific (including large economies of China and India). In Africa, back–to–back El Niño

events appear to be particularly damaging. Similarly, back–to–back La Niña events can significantly

detract from growth in Asia-Pacific. By explicitly focusing on developing countries, this study adds

considerably to the body of literature that has focused on large economies of developed countries
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(Brunner, 2002; Berry and Okulicz-Kozaryn, 2008), or a relatively small group of developing coun-

tries (Laosuthi and Selover, 2007; Cashin et al., 2017). The findings of this study are important

for, at least, two reasons. First, from the modeling standpoint, the effect of ENSO shocks are

found to vary in magnitude and direction across different regions of the world. Second, in terms

of policy implications, there may be an opportunity for short-term adjustments to international

aid programs, depending on the existing state and the expected intermediate-term pattern of the

ENSO cycle.

2 The Model

To begin, consider a simple econometric representation that relates economic growth to the state

of ENSO. Let yit be the growth rate of country i in period t; and let xt = (xt, xt−1)′ be a vector

of current and lagged levels of the sea surface temperature (SST) anomaly—a proxy continuous

variable depicting the state of ENSO.1 The relationship can be represented by:

yit = θ′xt + δ′idit + αi + εit, (1)

where i = 1, . . . , N , and t = 1, . . . , T ; θ is a set of parameters depicting the contemporaneous and

lagged effect of ENSO; dit is a country–specific vector of deterministic trend or lagged dependent

variables, and δi is the associated parameter vector; αi combines country-specific unobserved effects

that, moreover, may be correlated with xt or dit. For example, observations in the data may not

be missing at random, rather selected countries may be present in the sample during different

ENSO phases (Hsiang et al., 2011); also, trends and dynamics in growth rates may be dependent

on time-invariant characteristics of a country. Finally, εit is an error term.

We use both contemporaneous and lagged ENSO realizations as explanatory variables to follow

the rationale—suggested by Hsiang and Meng (2015)—that an ENSO event can extend beyond

a calendar year, and may also be temporally displaced (see, also, Hsiang, 2016). This modeling
1We apply levels of the SST anomaly—rather than their log-transformed variants—primarily to facilitate the

interpretation of the associated parameters, which depict the effect of a 1◦C change in SST on the growth rate.
Moreover, given that SST anomalies are measured as deviations from the long-run mean, they can take negative
values, and the log-transformation is not directly applicable. See the Data section for further details.
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setup, moreover, assumes that the SST anomaly is weakly exogenous in the sense that ENSO

can contemporaneously impact growth, but the converse is not true. This assumption—which also

serves as an identification condition—is hardly controversial, and is consistent with previous studies

(e.g., Brunner, 2002; Hsiang and Meng, 2015). The foregoing discussion also implies that inclusion

of a lagged independent variable in the model is motivated by theoretical and statistical reasons,

and is not done for the purposes of identification (for further analysis, and caveats associated with

the use of lagged independent variables due to endogeneity, refer to Bellemare et al., 2017).

Note that equation (1) does not control for any time–varying economic variables. While a num-

ber of factors influence the growth rate in a given economy—inflation, exchange rates, or political

instability, to name a few—care is needed when deciding whether or not to include those in the

regression (see, e.g., Hsiang et al., 2013; Burke et al., 2015b; Acharya et al., 2016). A case in

point is the so called “bad control”—a variable that itself is an outcome of the experiment at hand

(Angrist and Pischke, 2008). In the context of the current exercise, an ENSO shock represents

a “natural experiment” that impacts economic growth through multiple channels. These can in-

volve country–specific factors as described above, as well as common factors, such as international

commodity prices, global business cycles, etc. Controlling for variables of this nature runs the risk

of introducing bias, because they are endogenous and therefore may be affected by confounding

variables (see, also, Acharya et al., 2016). Moreover, we could possibly estimate a coefficient des-

cribing the ENSO effect that has been deteriorated and has no practical interpretation, because

some of explanatory power of ENSO has been assigned to another variable. At the extreme, if we

happen to incorporate all the factors through which ENSO affects economic growth, the coefficient

describing the ENSO effect will become indistinguishable from zero, prompting to draw a false con-

clusion about the relationship between this climate phenomenon and economic growth (see, also,

Hsiang et al., 2013). On the other hand, if we fail to control for factors that impact growth but

are uncorrelated with ENSO, while we would forfeit efficiency of parameter estimates, we would

not introduce omitted variable bias. As our ultimate goal is to estimate the overall (direct and

indirect) impact of ENSO shocks on economic growth, there will be little benefit, and likely more

harm, in controlling for additional factors in the model.
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The model, as specified in equation (1), assumes linearity and homogeneity in the ENSO effect.

These assumptions imply that the economic growth responses to positive and negative 1◦C devi-

ations in SST (i.e., the El Niño–like and the La Niña–like events of equal magnitude) are mirror

images of each other; and that the effect is similar across all countries in consideration. Neither

of these need to be the case. Responses to ENSO shocks are in fact very likely to be asymmetric

and vary across countries. First, ENSO cycles tend to follow an asymmetric pattern. In particular,

El Niño events develop somewhat unexpectedly, whereas La Niña events typically follow the previ-

ously realized El Niño events (Hall et al., 2001; Ubilava and Helmers, 2013). The growth effect of

ENSO shocks—due to a number of intermediary channels—can therefore be very different during

El Niño and La Niña phases. Second, the effect of ENSO events on weather in different parts of

the world is also nonlinear (Cai et al., 2010). That is, the El Niño and La Niña events do not

necessarily manifest into the opposite weather patterns (see, also, Appendix Figure A2). Finally,

any weather anomaly may be damaging. For example, both positive and negative SST anomalies

can possibly result in reduced yields in major crop-producing regions (Legler et al., 1999; Mason

and Goddard, 2001; Iizumi et al., 2014; Anderson et al., 2017).

To examine the asymmetric effect of ENSO, we interact the vector of current and lagged SST

anomalies, xt, with Heaviside indicators, I(xt−1 < 0) and I(xt−1 ≥ 0), where I(·) takes on 1 if

the condition inside the parentheses is satisfied, and 0 otherwise. To reliably identify and estimate

the country–specific parameters associated with ENSO, we would need a longer time series that

captures a large enough number of ENSO cycles (see, also, Chudik et al., 2017). Instead, we opt

for a middle ground, and examine region–specific heterogeneity of the ENSO effect. The following

augmented version of equation (1) then accounts for potential nonlinearity and heterogeneity in

the ENSO effect:

yirt = β′xtI(xt−1 < 0) + γ ′xtI(xt−1 ≥ 0) + δ′idit + αi + εirt, (2)

where r = 1, . . . , R denotes a region, such that R � N . So, for a given region r, the parameter

vector β depicts the contemporaneous and lagged effects of SST anomalies given a La Niña event

in the previous period, and the parameter vector γ depicts the contemporaneous and lagged effect
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of SST anomalies given an El Niño event in the previous period; the remaining variables and

parameters are as described above.

3 Data

The measure of economic performance in this study is per capita GDP growth rate. Using per capita

data has the advantage of scaling economic growth to better reflect the standard of living for citizens

of that country. While this measure alone is not enough to fully capture the multidimensional

nature of poverty and development, it is considered in many cases to be a powerful correlate with

development (Anand and Harris, 1994; Aturupane et al., 1994). We obtained the economic series

from World Development Indicators—the electronic data portal of the World Bank. In addition

to growth data, we also obtained (i) agriculture value added (% of GDP), and (ii) employment in

agriculture (% of total employment). These variables are to serve as proxies for individual country

vulnerability to ENSO–induced weather anomalies.

In selecting the countries, we sourced all those that the World Bank classifies as low–income,

lower–middle–income, or upper–middle–income economies, and at no point were classified as high–

income economies between 1987 and 2015. In addition, these countries had at least 30 observations

between 1981 and 2015, although the time–range of the analysis spans from 1961 to 2015. Notably,

these data can be inaccurate, and are to be considered as a proxy, at best (or an educated guess,

at worst).2 Such measurement error in the dependent variable can inflate standard errors and

thus affect inference. To mitigate the issue, we omitted countries with unusually large growth rate

volatility (i.e., those with the growth rate standard deviation exceeding 10%, or with a growth rate

greater than 35% in any given period). This left a total of 69 countries for analysis. Table 1 presents

some key statistics describing the composition of growth rates and aforementioned vulnerability

measures. Appendix Table A1 offers a more complete, country–specific picture of these variables.

We use SST anomalies in the Niño3.4 region as the measure of ENSO intensity. The index

is sourced from the electronic database of the Climate Prediction Center at the National Oceanic

and Atmospheric Administration. The SST anomaly represents the deviations in SST (measured
2We thank the anonymous referee for emphasizing this caveat.
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Table 1: Descriptive Statistics of Selected Variables

Countries n mean s.d. min max

Average growth rate
All 69 1.9 1.5 -1.5 6.9
Tropical/Humid 39 1.8 1.4 -1.5 4.9
Temperate/Arid 30 2.0 1.6 -0.7 6.9
Africa 38 1.4 1.4 -1.5 5.5
Americas 16 1.8 0.8 0.5 3.1
Asia-Pacific 15 3.4 1.4 1.6 6.9

Average agriculture value added (% of GDP)
All 69 24.8 13.1 5.5 52.8
Tropical/Humid 39 23.9 13.0 6.5 52.8
Temperate/Arid 30 26.0 13.2 5.5 50.7
Africa 38 28.3 13.4 5.5 52.8
Americas 16 13.6 5.1 6.5 23.4
Asia-Pacific 15 27.9 11.7 8.8 50.7

Average employment in agriculture (% of total employment)

All 55 38.5 21.0 5.1 83.6
Tropical/Humid 32 37.9 21.4 8.0 77.4
Temperate/Arid 23 39.5 20.9 5.1 83.6
Africa 25 41.7 22.8 5.1 83.6
Americas 16 21.9 10.6 8.0 44.0
Asia-Pacific 14 51.9 14.0 20.8 72.3

Note: n denotes the number of countries within each group; the rest are descriptive statistics in percentage terms.
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in degree Celsius) in the equatorial Pacific in a given month from its long-run average during

the 1980–2010 base period. To obtain the annualized measure of the SST anomaly, we averaged

the monthly SST anomalies between May of a given year and February of the following year to

mitigate the effect of the so called “spring barrier” (e.g. Sarachik and Cane, 2010; Hsiang et al.,

2011). Figure 2 illustrates the annualized SST anomaly along with cross-sectionally averaged

growth rates. Notably, the time frame in consideration contains several extreme ENSO episodes of

the recent history, including the well-documented 1997 El Niño, and strong La Niña occurrences of

late 1980s and 1990s.

J F M A M J J A S O N D J F M A M J J A S O N D

Spring Barrier Spring Barrier

ENSOt

t t+ 1

Figure 1: Obtaining the yearly measure of ENSO from monthly SST anomaly

Climatic zones, in this study, are identified based the Köppen–Geiger climate classification (Peel

et al., 2007). The country aggregates of climatic zones were obtained from the online database of

the Center for International Earth Science Information Network (CIESIN, 2012). In our analysis,

the Tropical/Humid group includes countries that are predominantly (50% or more of the total

area) within Af, Am, Aw, and Cfa zones of the aforementioned classification. The Temperate/Arid

group includes countries that are predominantly in Bw, Bsh, Bsk, Cs, Cw, Cfb, Cfc zones. Figure 3

illustrates the geographical distribution of countries in these two aggregate climatic zones.
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Figure 2: Dynamics of the average economic growth and the ENSO cycle

Note: SST Anomaly is an average of monthly SST deviations over nine consecutive months in the June–February
range; Growth Rate is cross–sectionally averaged growth rates across all countries in consideration.
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Figure 3: Climatic Zones

Note: Tropical/Humid countries (solid blue) are those with 50% or more of the total area within Af, Am, Aw, and Cfa
zones; and Temperate/Arid countries (hatched orange) are those with 50% or more of the total area within Bw, Bsh,
Bsk, Cs, Cw, Cfb, Cfc zones of the Köppen–Geiger climate classification.
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4 Estimation and Findings

We begin by estimating the benchmark model, which is a basic linear fixed effects model with homo-

geneous estimates of the contemporaneous and lagged ENSO effect on growth. Table 2 summarizes

the results from five candidate model specifications. These model variants assume homogeneous

effect of ENSO, but differ in the way country–specific trends and short term dynamics are speci-

fied. Models 2 through 5 are equivalent to pooled mean group estimator of Pesaran et al. (1999).

Here and in subsequent tables, the parameter estimates associated with ENSO events are compa-

rable across these five specifications. We find that contemporaneous and lagged El Niño events on

average negatively affect growth rates across the 69 countries (equivalently, La Niña events have

growth–enhancing impact on economic growth).

Table 2: Linear Impact of ENSO on Growth

1 2 3 4 5

SSTt −0.269** −0.305** −0.226* −0.227* −0.227*

(0.103) (0.100) (0.096) (0.093) (0.092)
SSTt−1 −0.237* −0.248* −0.159 −0.136 −0.104

(0.114) (0.111) (0.105) (0.104) (0.103)

fixed effects Y Y Y Y Y
linear trend N Y N N N
lag order N N 1 2 3
R-squared 0.004 0.059 0.115 0.149 0.169

Note: values in parentheses are standard errors that are adjusted to account for spatial autocorrelation of arbitrary
form within 2,000 km and serial correlation over three years as per Conley (1999); ** and * denote statistical
significance at 0.01 and 0.05 levels.

4.1 Nonlinear and Heterogeneous Impact of ENSO

The foregoing benchmark model is restrictive in two dimensions, as it assumes growth responds

linearly to El Niño and La Niña events and that the impact is similar across all countries. We

first relax the assumption of linearity. That is, we allow the slope estimates during the El Niño

regime—i.e., when the lagged SST anomaly is greater than zero—to be different from those during

the La Niña regime—i.e., when the lagged SST anomaly is less than zero. Table 3 features such
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regime–dependent nonlinear effect of contemporaneous and lagged SST anomalies on growth.

Table 3: Nonlinear Impact of ENSO on Growth

1 2 3 4 5

SSTt|SSTt−1 ≥ 0 −0.763** −0.818** −0.576** −0.616** −0.596**

(0.164) (0.158) (0.148) (0.145) (0.142)
SSTt−1|SSTt−1 ≥ 0 −1.093** −1.046** −0.890** −0.935** −0.855**

(0.296) (0.287) (0.270) (0.265) (0.263)
SSTt|SSTt−1 < 0 −0.135 −0.131 −0.188 −0.177 −0.179

(0.164) (0.157) (0.154) (0.148) (0.147)
SSTt−1|SSTt−1 < 0 0.277 0.192 0.328 0.386 0.383

(0.226) (0.224) (0.210) (0.209) (0.209)

fixed effects Y Y Y Y Y
linear trend N Y N N N
lag order N N 1 2 3
R-squared 0.009 0.065 0.119 0.153 0.173

Note: values in parentheses are standard errors that are adjusted to account for spatial autocorrelation of arbitrary
form within 2,000 km and serial correlation over three years as per Conley (1999); ** and * denote statistical
significance at 0.01 and 0.05 levels.

Under this new specification, SST anomalies are found to have a considerably large negative

impact on economic growth during the El Niño regime, but the effect is small and statistically

insignificant during the La Niña regime. This is an interesting finding, particularly from the

standpoint of policy-making, and builds importantly upon the current body of literature (notably,

in an extension of their study, Cashin et al., 2017, find that asymmetries can be a characteristic

feature of ENSO–growth relationship in an array of countries). Indeed, a stronger effect is unveiled

by allowing for asymmetries in the ENSO–growth relationship.

The foregoing model specifications assume the same growth effect of ENSO events across coun-

tries. At the other extreme, we can simply estimate country–specific equations. To that end, model

1 is effectively a distributed lag (DL) model with intercept, model 2 is a DL model with intercept

and trend, and models 3, 4 and 5 are autoregressive distributed lag (ARDL) models of order one,

two and three, respectively. Figure 4 presents the distribution of growth effects associated with

SST anomalies (see Appendix Figure A2 for geographical distribution of these effects).

Several observations are notable. First, the effect is heterogeneous across countries, but some

regional clustering is apparent. Second, the negative impact, particularly due to back–to–back
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Figure 4: Heterogeneous impact of ENSO on growth
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El Niño or La Niña events, prevail across countries. Finally, the mean group estimates of the

ENSO effects are comparable with those from the fixed effects model in Table 3.

4.2 The ENSO Impact Across Climatic Zones and Geographic Regions

As a middle ground between the homogeneous effect at one extreme and the country–specific effects

at the other extreme, we proceed by estimating the group–specific growth effects of SST anomalies.

To begin, we group countries into the Tropical/Humid and Temperate/Arid regions, as described in

the Data section. As previously, we estimate the relationship between economic growth and ENSO

in a fixed effects setting. Table 4 summarizes the estimation results.

Table 4: Nonlinear Impact of ENSO on Growth Across Climatic Zones

1 2 3 4 5

Tropical/Humid (n=39)
SSTt|SSTt−1 ≥ 0 −0.833**‡ −0.874**‡ −0.670**‡ −0.692**‡ −0.680**‡

(0.205) (0.202) (0.183) (0.183) (0.183)
SSTt−1|SSTt−1 ≥ 0 −1.487**‡ −1.465**‡ −1.263**‡ −1.266**‡ −1.194**‡

(0.407) (0.400) (0.369) (0.357) (0.355)
SSTt|SSTt−1 < 0 −0.278 −0.284 −0.342 −0.253 −0.241

(0.213) (0.207) (0.199) (0.193) (0.190)
SSTt−1|SSTt−1 < 0 0.693* 0.639* 0.710**† 0.759**† 0.739**†

(0.286) (0.293) (0.259) (0.252) (0.252)

Temperate/Arid (n=30)
SSTt|SSTt−1 ≥ 0 −0.671**† −0.744**† −0.448 −0.512* −0.479*

(0.255) (0.242) (0.237) (0.231) (0.221)
SSTt−1|SSTt−1 ≥ 0 −0.576 −0.498 −0.404 −0.499 −0.409

(0.389) (0.371) (0.367) (0.367) (0.365)
SSTt|SSTt−1 < 0 0.056 0.073 0.017 −0.075 −0.093

(0.243) (0.237) (0.229) (0.219) (0.219)
SSTt−1|SSTt−1 < 0 −0.272 −0.397 −0.177 −0.105 −0.087

(0.342) (0.333) (0.326) (0.327) (0.329)

fixed effects Y Y Y Y Y
linear trend N Y N N N
lag order N N 1 2 3
R-squared 0.011 0.067 0.120 0.155 0.174

Note: n denotes the number of countries. Values in parentheses are standard errors that are adjusted to account for
spatial autocorrelation of arbitrary form within 2,000 km and serial correlation over three years as per Conley
(1999); ** and * denote statistical significance at 0.01 and 0.05 levels; ‡ and † denote statistical significance at 0.01
and 0.05 levels after Bonferroni correction.
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Two observations are particularly apparent in these results. First, the tropical countries are

most susceptible to ENSO anomalies. Second, the asymmetries in the ENSO effect are particularly

pronounced, as negative growth effects during El Niño conditions are not matched by positive

growth effects in the wake of La Niña.

To better illustrate these asymmetries, for each country we simulated 1000 paths of growth

dynamics by randomly sampling five–year vectors of historical realizations of the SST anomalies,

x∗t = (xt−1, xt, . . . , xt+1)′, and then iterating forward the growth rates using these data to generate

the baseline scenario. Similarly, we generated two additional paths of growth rates, where in period

t, a unit shock (i.e., 1◦C) was added to or subtracted from the SST realization, thus forming the

El Niño and La Niña scenarios, respectively. The difference between these scenarios and the baseline

scenario, averaged across 1000 simulated paths, form the expected path of growth rate dynamics

illustrated in Figure 5. Besides the asymmetries, the figure also shows that the impact of an ENSO

event largely dissipates two years after the event in all zones.

Alternatively, the effect of ENSOmay vary across continents. This could be due to climatological

reasons, as differing proximity to the Niño3.4 region can result in varying growth effects of ENSO.

Moreover, socio-economic and political factors that characterizes a given geographic cluster of

countries may also result in regional heterogeneity of the ENSO effects. To examine this, we

grouped countries into three geographic regions: Africa, Americas, and Asia-Pacific. Table 5

presents the regression results.

In addition to the previously noted ENSO effects, several features of interest emerge from these

parameter estimates. In Africa, back–to–back El Niño events are growth limiting, but this adverse

effect can be mitigated by a La Niña after an El Niño. Similarly, in Asia-Pacific, back–to–back

La Niña events significantly reduce economic growth, but an El Niño after a La Niña can induce

growth in the region. Compared to these two geographic regions, in the Americas, the growth

impact is of lower magnitude and not statistically significant. Figure 6 illustrates the dynamics of

these effects using a simulation method outlined previously.
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Figure 5: Dynamics of nonlinear impact of ENSO on growth across climatic zones

Note: Each curve represents an average of individual country dynamics obtained by iterating forward a positive or
negative 1◦C SST deviation in period t, given 1000 randomly sampled vectors of SST realizations for periods
{t− 1, t, . . . , t+ 3}.
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Table 5: Nonlinear Impact of ENSO on Growth Across Geographic Regions

1 2 3 4 5

Africa (n=38)
SSTt|SSTt−1 ≥ 0 −1.010**‡ −1.017**‡ −0.794**‡ −0.843**‡ −0.811**‡

(0.249) (0.240) (0.225) (0.219) (0.212)
SSTt−1|SSTt−1 ≥ 0 −1.241**† −1.158**† −1.099**† −1.152**† −0.979*

(0.435) (0.422) (0.402) (0.391) (0.389)
SSTt|SSTt−1 < 0 −0.010 0.004 −0.063 −0.046 −0.053

(0.239) (0.230) (0.232) (0.219) (0.217)
SSTt−1|SSTt−1 < 0 −0.145 −0.198 0.001 0.069 0.058

(0.336) (0.337) (0.318) (0.318) (0.319)

Americas (n=16)
SSTt|SSTt−1 ≥ 0 −0.492 −0.496 −0.258 −0.317 −0.319

(0.287) (0.289) (0.251) (0.262) (0.262)
SSTt−1|SSTt−1 ≥ 0 −0.679 −0.676 −0.488 −0.486 −0.467

(0.483) (0.481) (0.399) (0.412) (0.410)
SSTt|SSTt−1 < 0 −0.296 −0.298 −0.329 −0.254 −0.225

(0.316) (0.318) (0.289) (0.282) (0.276)
SSTt−1|SSTt−1 < 0 0.285 0.280 0.407 0.421 0.373

(0.392) (0.393) (0.345) (0.321) (0.306)

Asia-Pacific (n=15)
SSTt|SSTt−1 ≥ 0 −0.432 −0.666** −0.374 −0.372 −0.343

(0.272) (0.245) (0.234) (0.225) (0.218)
SSTt−1|SSTt−1 ≥ 0 −1.174* −1.169* −0.811 −0.886 −0.982

(0.570) (0.554) (0.537) (0.537) (0.533)
SSTt|SSTt−1 < 0 −0.263 −0.279 −0.332 −0.404 −0.429

(0.283) (0.250) (0.260) (0.259) (0.258)
SSTt−1|SSTt−1 < 0 1.339**‡ 1.079**† 1.067**† 1.152**† 1.244**†

(0.414) (0.405) (0.390) (0.394) (0.412)

fixed effects Y Y Y Y Y
linear trend N Y N N N
lag order N N 1 2 3
R-squared 0.014 0.068 0.122 0.156 0.176

Note: n denotes the number of countries. Values in parentheses are standard errors that are adjusted to account for
spatial autocorrelation of arbitrary form within 2,000 km and serial correlation over three years as per Conley
(1999); ** and * denote statistical significance at 0.01 and 0.05 levels; ‡ and † denote statistical significance at 0.01
and 0.05 levels after Bonferroni correction.
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Figure 6: Dynamics of nonlinear impact of ENSO on growth across geographic regions

Note: Each curve represents an average of individual country dynamics obtained by iterating forward a positive or
negative 1◦C SST deviation in period t, given 1000 randomly sampled vectors of SST realizations for periods
{t− 1, t, . . . , t+ 3}.
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4.3 The ENSO Impact Through Agriculture

As alluded from the very beginning, countries where agriculture plays an important role in to-

tal economic output are likely to be more susceptible to ENSO shocks. We examine the role of

agriculture by interacting the country–invariant SST anomaly with the time–invariant and country–

specific vulnerability measure, the latter being either the agriculture value added (% of GDP) or

the employment share of agriculture (% of total employment). We use country–averages of these

measures, partly because agriculture (relative to GDP)—and, to a lesser extent, temporal labor

displacement—can be a function of weather; but also due to data limitations, as for many countries

the lengths of these series are much shorter than those of growth and SST anomalies. Finally, to

facilitate comparison with parameter estimates from previous models, these measures are cross–

sectionally mean–centered. Tables 6 and 7 summarize the parameter estimates of models associated

with each of the two vulnerability measures.

In accord with expectations, we find that the growth tends to be more sensitive to ENSO events

in countries with a larger agriculture share of GDP or larger employment share in agriculture.

Moreover, the results for the two vulnerability measures are very similar. On average, the negative

growth effect of El Niño event is up to 0.2 percentage points larger in magnitude for countries that

are 10% more agricultural (as measured by either of the two vulnerability indices). This difference,

while economically meaningful, is not statistically significant. There is no doubt, agriculture is one

of the major pathways by which ENSO affects growth. But the signal in this causal mechanism

may be mitigated as other socio-economic or political factors also mediate (though, not confound)

climatic shocks on broader macroeconomic variables.

4.4 Cross Sectional Dependence and Sensitivity Analyses

Unobserved common shocks can influence growth rates in neighboring countries. Recent develop-

ments in the heterogeneous dynamic panel data modeling literature offer a possibility of addressing

the error cross sectional dependence (see, e.g., Pesaran, 2006; Chudik and Pesaran, 2015; Chudik

et al., 2017). The approach involves augmenting the original model with cross–sectionally averaged

dependent variable as well as independent variables (that vary across units and over time). While
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Table 6: Nonlinear Impact of ENSO Through Agriculture Share of GDP

1 2 3 4 5

SSTt|SSTt−1 ≥ 0 −0.763**‡ −0.819**‡ −0.575**‡ −0.616**‡ −0.595**‡

(0.164) (0.158) (0.147) (0.145) (0.142)
SSTt−1|SSTt−1 ≥ 0 −1.097**‡ −1.050**‡ −0.892**‡ −0.938**‡ −0.858**‡

(0.296) (0.287) (0.270) (0.266) (0.264)
SSTt|SSTt−1 < 0 −0.137 −0.134 −0.189 −0.179 −0.181

(0.164) (0.157) (0.155) (0.149) (0.147)
SSTt−1|SSTt−1 < 0 0.280 0.194 0.328 0.387 0.383

(0.226) (0.224) (0.210) (0.209) (0.210)
AGRi×SSTt|SSTt−1 ≥ 0 0.001 −0.006 −0.004 −0.003 −0.002

(0.013) (0.012) (0.012) (0.012) (0.011)
AGRi×SSTt−1|SSTt−1 ≥ 0 −0.024 −0.024 −0.023 −0.018 −0.017

(0.023) (0.023) (0.022) (0.021) (0.021)
AGRi×SSTt|SSTt−1 < 0 −0.011 −0.012 −0.007 −0.006 −0.007

(0.012) (0.012) (0.012) (0.011) (0.011)
AGRi×SSTt−1|SSTt−1 < 0 0.013 0.006 −0.002 −0.001 −0.002

(0.017) (0.017) (0.016) (0.016) (0.016)

fixed effects Y Y Y Y Y
linear trend N Y N N N
lag order N N 1 2 3
R-squared 0.010 0.066 0.120 0.154 0.174

Note: values in parentheses are standard errors that are adjusted to account for spatial autocorrelation of arbitrary
form within 2,000 km and serial correlation over three years as per Conley (1999); ** and * denote statistical
significance at 0.01 and 0.05 levels; ‡ and † denote statistical significance at 0.01 and 0.05 levels after Bonferroni
correction.
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Table 7: Nonlinear Impact of ENSO Through Employment Share in Agriculture

1 2 3 4 5

SSTt|SSTt−1 ≥ 0 −0.776**‡ −0.840**‡ −0.575**‡ −0.640**‡ −0.646**‡

(0.170) (0.165) (0.152) (0.151) (0.149)
SSTt−1|SSTt−1 ≥ 0 −1.029**‡ −0.982**‡ −0.789**‡ −0.906**‡ −0.866**‡

(0.302) (0.293) (0.272) (0.274) (0.272)
SSTt|SSTt−1 < 0 −0.095 −0.091 −0.130 −0.171 −0.184

(0.175) (0.168) (0.165) (0.158) (0.158)
SSTt−1|SSTt−1 < 0 0.336 0.238 0.381 0.445* 0.476*

(0.235) (0.230) (0.218) (0.217) (0.217)
EMPi×SSTt|SSTt−1 ≥ 0 −0.001 −0.007 −0.005 −0.003 −0.003

(0.008) (0.008) (0.008) (0.007) (0.007)
EMPi×SSTt−1|SSTt−1 ≥ 0 −0.012 −0.016 −0.011 −0.011 −0.013

(0.013) (0.013) (0.012) (0.012) (0.012)
EMPi×SSTt|SSTt−1 < 0 −0.002 −0.003 −0.001 −0.003 −0.002

(0.007) (0.007) (0.007) (0.007) (0.007)
EMPi×SSTt−1|SSTt−1 < 0 0.012 0.008 0.003 0.006 0.005

(0.011) (0.011) (0.010) (0.010) (0.010)

fixed effects Y Y Y Y Y
linear trend N Y N N N
lag order N N 1 2 3
R-squared 0.011 0.071 0.141 0.176 0.196

Note: standard errors that are adjusted to account for spatial autocorrelation of arbitrary form within 2,000 km
and serial correlation over three years as per Conley (1999); ** and * denote statistical significance at 0.01 and 0.05
levels; ‡ and † denote statistical significance at 0.01 and 0.05 levels after Bonferroni correction.
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we acknowledge the benefits of the aforementioned methodology in certain circumstances, here we

do not implement it for reasons discussed below. Because ENSO is an observed common factor,

by introducing into the model the cross–sectionally averaged dependent variable that is very likely

correlated with ENSO, we will be altering conditioning set in a way that may not be desirable.

Under the maintained assumption of exogeneity of ENSO, and to the extent that ENSO on average

impacts growth rates of the countries in consideration, the cross–sectionally averaged dependent

variable will act as “bad control”, and bring with it the caveats discussed in the Model section. For

example, growth among neighboring countries may be correlated due to trade–induced spillovers.

But if the change in trade is an outcome of an ENSO event, we would not want to control for it

as long as the goal remains to estimate the total effect of ENSO. Alternatively, if an unobserved

common factor is in fact uncorrelated with ENSO, we could potentially benefit from model aug-

mentation, but that would merely improve efficiency rather than stability of parameter estimates.

Instead, in this study we apply a general method of moments approach put forward by Conley

(1999), which allows for adjustments in spatial and temporal correlation in error terms (see, also,

Hsiang, 2010; Hsiang and Meng, 2015) .

The applied specific–to–general modeling approach allows us to examine several model specifi-

cations that range from a parsimonious linear fixed effects to flexible nonlinear and heterogeneous

alternatives. To complete the modeling cycle, we conducted an array of robustness checks (see

Appendix Tables A2 and A3). In particular, to test for a placebo effect, we added two–year–ahead

leads of SST anomalies to the originally estimated models. The results show hardly any indication

of the placebo effect, while the parameter estimates of current and lagged SST anomalies remain

comparable to those reported previously. As an alternative test, we regressed population growth

rate on current and lagged SST anomalies. Again, the results reveal no evidence of spurious corre-

lation. Finally, to check that very small or very large countries in the sample are not systemically

altering the results—an effect that, in part, could be attributed to the previously discussed issue

of the measurement error—we re-estimated parameters using a subset of data that exclude small

countries (with 2010 population less than 5 million) or large countries (with 2010 population gre-

ater than 100 million). The results are qualitatively similar to those reported previously, with an
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exception of the Asia-Pacific region, where the large economies, such as China and India among

others, appear to be playing a considerable role in the previously reported results.

5 Implications and Limitations

Linking ENSO shocks to the economic growth of an array of countries in Africa, Asia, and Americas

has several important implications. El Niño and La Niña events should be explicitly considered

when making macroeconomic decisions and forecasts. For example, ENSO–related lower economic

growth can be countered by expansionary macroeconomic policies, such as increased government

spending. However, this may be an unattainable luxury for many developing countries. In such

instances, the international community—the developed world in particular—could provide relief by

directing aid flows to regions that are most affected by ENSO–induced weather shocks. Effective

policy actions, moreover, can also be of the microeconomic nature, targeted towards reducing

climate sensitivity of lower-income rural communities.

Communicating ENSO forecasts to the relevant parties can provide them with the opportu-

nity to decrease their climate vulnerability. While the prediction of ENSO events has certainly

improved, the spatial variability of teleconnections across different events complicates forecasting

for a specific region. Nonetheless, there are benefits to a priori knowledge that reduces uncertainty

about future climate, and thus affected (and involved) parties can take beneficial and timely action

(Meza et al., 2008). For example, the forecast of an El Niño event, combined with the knowledge

that it increases the probability of dry conditions for a region, could lead to increased preparedness

and cost mitigation via the planting of more drought resistance crops. Policy-makers aiming to

curb climate-induced growth shocks and alleviate the risks to agricultural production can bene-

fit from forecast communication. Moreover, efforts to improve trade and storage capacity would

be effective in smoothing supply, as well as price and consumption. International aid, be that in

cash or via food programs, can mitigate socio–economic issues associated with supply shortage and

inflationary pressures due to the climate shocks.

Finally, in the current study the ENSO effect may be camouflaged for at least two potential

reasons. First, the impact of ENSO may be too localized or too short-term to be reflected in
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movements of the annual country–wide economic growth measure. That is, the aggregation over

time and across space may mask important regional and temporal heterogeneities. Second, there

may be limitations in using the SST anomalies to measure the impact of ENSO. While deviations

in this index are closely linked to an increased probability of droughts and pluvial periods, there are

spatial and intensity differences from one event to another that makes comparison difficult. That is,

all else being equal, the broader macroeconomic implications could differ markedly during different

ENSO episodes despite events recording identical warming or cooling phases. The aforementioned

considerations should be factored in during the decision making process, especially in countries

where little evidence is found in support of the ENSO role in per capita GDP growth.

6 Conclusion

Societies across the world are subjected to the repercussions of ENSO–induced weather anomalies.

This is even more true for countries in the developing world. Many of these countries are reliant on

agriculture and primary commodity exports as major sources of economic activity and a channel

via which they develop. The historically strong links between agriculture and food security further

amplify the adversity of ENSO events. The findings of this study make several notable additions

to the body of literature concerned with the macroeconomic consequences of ENSO shocks.

In this study, we investigate the effect of ENSO on economic growth of a large set of developing

countries. We find that growth rates respond asymmetrically to ENSO shocks. In particular, while

an El Niño event considerably reduces economic growth, the effect of a La Niña event is much

less apparent. Moreover, we find that the regional heterogeneities exist in the impact of ENSO

shocks. Of particular importance is strong evidence of the ENSO impact in tropical countries. An

indication of such effect has been offered previously (Hsiang and Meng, 2015), but here we show

that not only agriculture but economy as a whole can be negatively affected by El Niño events. In

addition, we find that countries in Asia-Pacific tend to react negatively to not only events causing

dry conditions but also those characterized by increased precipitation. Countries in Africa also

experience significantly reduced growth during El Niño events, particularly those back-to-back,

whereas developing economies in the Americas appear to be less affected by these climate events.
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Several interesting directions for future research emerge from this analysis. A more complex

modeling framework may uncover mechanisms through which the ENSO shocks manifest into gro-

wth. Identifying such channels could assist policy-makers to pinpoint actions in reducing climate

vulnerability. We refer readers to Cashin et al. (2017) for one such application. While the effect

of ENSO on agricultural productivity has been already examined (e.g., Hsiang and Meng, 2015),

another interesting line of further research would be to analyze the impact of ENSO on various

other factors of development, such as education, health, and living standards. For example, the

hypothesis that inequality is entrenched in regions exposed to ENSO events would be an interesting

venue to examine. The aforementioned are potentially important questions that emerged from the

main findings of the current research—which we shall leave for future studies to consider.

26



References

Acemoglu, D., S. Johnson, and J. A. Robinson (2001). The Colonial Origins of Comparative
Development: An Empirical Investigation. The American Economic Review 91 (5), 1369–1401.

Acharya, A., M. Blackwell, and M. Sen (2016). Explaining Causal Findings Without Bias: Detecting
and Assessing Direct Effects. The American Political Science Review 110 (3), 512–529.

Anand, S. and C. J. Harris (1994). Choosing a Welfare Indicator. The American Economic Re-
view 84 (2), 226–231.

Anderson, W., R. Seager, W. Baethgen, and M. Cane (2017). Crop Production Variability in North
and South America Forced by Life-cycles of the El Niño Southern Oscillation. Agricultural and
Forest Meteorology 239, 151–165.

Angrist, J. D. and J.-S. Pischke (2008). Mostly Harmless Econometrics: An Empiricist’s Compa-
nion. Princeton University Press.

Aturupane, H., P. Glewwe, and P. Isenman (1994). Poverty, Human Development, and Growth:
An Emerging Consensus? The American Economic Review 84 (2), 244–249.

Barro, R. J. (1991). Economic Growth in a Cross Section of Countries. The Quarterly Journal of
Economics 106 (2), 407–443.

Barro, R. J. (1996). Determinants of Economic Growth: A Cross-country Empirical Study. Techni-
cal Report NBER Working Paper 5698, National Bureau of Economic Research.

Bellemare, M. F. (2015). Rising Food Prices, Food Price Volatility, and Social Unrest. American
Journal of Agricultural Economics 97 (1), 1–21.

Bellemare, M. F., T. Masaki, and T. B. Pepinsky (2017). Lagged Explanatory Variables and the
Estimation of Causal Effects. Journal of Politics. forthcoming.

Berry, B. and A. Okulicz-Kozaryn (2008). Are there ENSO Signals in the Macroeconomy? Ecolo-
gical Economics 64 (3), 625–633.

Brückner, M. and A. Ciccone (2010). International Commodity Prices, Growth and the Outbreak
of Civil War in Sub-Saharan Africa. The Economic Journal 120 (544), 519–534.

Brunner, A. (2002). El Niño and World Primary Commodity Prices: Warm Water or Hot Air?
Review of Economics and Statistics 84 (1), 176–183.

Burke, M., S. Hsiang, and E. Miguel (2015a). Global Non-linear Effect of Temperature on Economic
Production. Nature 527 (7577), 235–239.

27



Burke, M., S. M. Hsiang, and E. Miguel (2015b). Climate and Conflict. Annual Review of Econo-
mics 7 (1), 577–617.

Cai, W., P. Van Rensch, T. Cowan, and A. Sullivan (2010). Asymmetry in ENSO Teleconnection
with Regional Rainfall, its Multidecadal Variability, and Impact. Journal of Climate 23 (18),
4944–4955.

Cashin, P. A., K. Mohaddes, and M. Raissi (2017). Fair Weather or Foul? The Macroeconomic
Effects of El Niño. Journal of International Economics 106, 37–54.

Chudik, A., K. Mohaddes, M. H. Pesaran, and M. Raissi (2017). Is There a Debt–Threshold Effect
on Output Growth? Review of Economics and Statistics 99 (1), 135–150.

Chudik, A. and M. H. Pesaran (2015). Common Correlated Effects Estimation of Heterogeneous Dy-
namic Panel Data Models with Weakly Exogenous Regressors. Journal of Econometrics 188 (2),
393–420.

CIESIN (2012). National Aggregates of Geospatial Data Collection: Population, Landscape, And
Climate Estimates, Version 3 (PLACE III). Accessed: 05 April 2017.

Conley, T. G. (1999). GMM Estimation with Cross Sectional Dependence. Journal of Econome-
trics 92 (1), 1–45.

Dell, M., B. F. Jones, and B. A. Olken (2012). Temperature Shocks and Economic Growth:
Evidence from the Last Half Century. American Economic Journal: Macroeconomics 4 (3), 66–
95.

Dell, M., B. F. Jones, and B. A. Olken (2014). What Do We Learn from the Weather? The New
Climate-Economy Literature. Journal of Economic Literature 52 (3), 740–798.

Dilley, M. and B. N. Heyman (1995). ENSO and Disaster: Droughts, Floods and El Niño/Southern
Oscillation Warm Events. Disasters 19 (3), 181–193.

Hall, A., J. Skalin, and T. Teräsvirta (2001). A Nonlinear Time Series Model of El Nińo. Environ-
mental Modelling & Software 16 (2), 139–146.

Haug, G., D. Gunther, L. Peterson, D. Sigman, K. Hughen, and B. Aeschlimann (2003). Climate
and the Collapse of Mayan Civilization. Science 299 (5613), 1731–1735.

Hendrix, C. S. and S. Haggard (2015). Global Food Prices, Regime Type, and Urban Unrest in the
Developing World. Journal of Peace Research 52 (2), 143–157.

Hsiang, S. (2016). Climate Econometrics. NBER Working Paper 22181.
http://www.nber.org/papers/w22181.

28



Hsiang, S., K. Meng, and M. Cane (2011). Civil Conflicts are Associated with the Global Climate.
Nature 476 (7361), 438–441.

Hsiang, S. M. (2010). Temperatures and Cyclones Strongly Associated with Economic Production
in the Caribbean and Central America. Proceedings of the National Academy of Sciences 107 (35),
15367–15372.

Hsiang, S. M., M. Burke, and E. Miguel (2013). Quantifying the Influence of Climate on Human
Conflict. Science 341 (6151).

Hsiang, S. M. and K. C. Meng (2015). Tropical Economics. The American Economic Review 105 (5),
257–261.

Iizumi, T., J.-J. Luo, A. J. Challinor, G. Sakurai, M. Yokozawa, H. Sakuma, M. E. Brown, and
T. Yamagata (2014). Impacts of El Niño Southern Oscillation on the Global Yields of Major
Crops. Nature Communications 5 (3712).

Laosuthi, T. and D. D. Selover (2007). Does El Niño Affect Business Cycles? Eastern Economic
Journal 33 (1), 21–42.

Legler, D., K. Bryant, and J. O’Brien (1999). Impact of ENSO-related Climate Anomalies on Crop
Yields in the U.S. Climatic Change 42 (2), 351–375.

Loayza, N. V., R. Ranciere, L. Servén, and J. Ventura (2007). Macroeconomic Volatility and
Welfare in Developing Countries: An Introduction. The World Bank Economic Review 21 (3),
343–357.

Lobell, D. B. and C. B. Field (2007). Global Scale Climate – Crop Yield Relationships and the
Impacts of Recent Warming. Environmental Research Letters 2 (1), 1–7.

Lobell, D. B., W. Schlenker, and J. Costa-Roberts (2011). Climate Trends and Global Crop
Production Since 1980. Science 333 (6042), 616–620.

Mason, S. J. and L. Goddard (2001). Probabilistic Precipitation Anomalies Associated with ENSO.
Bulletin of the American Meteorological Society 82 (4), 619–638.

Masters, W. A. and M. S. McMillan (2001). Climate and Scale in Economic Growth. Journal of
Economic Growth 6 (3), 167–186.

Meza, F. J., J. W. Hansen, and D. Osgood (2008). Economic Value of Seasonal Climate Forecasts for
Agriculture: Review of ex-ante Assessments and Recommendations for Future Research. Journal
of Applied Meteorology and Climatology 47 (5), 1269–1286.

29



Noy, I. (2009). The Macroeconomic Consequences of Disasters. Journal of Delopment Econo-
mics 88 (2), 221–231.

Peel, M. C., B. L. Finlayson, and T. A. McMahon (2007). Updated world Map of the Köppen-Geiger
Climate Classification. Hydrology and earth system sciences discussions 4 (2), 439–473.

Pesaran, M. H. (2006). Estimation and Inference in Large Heterogeneous Panels with a Multifactor
Error Structure. Econometrica 74 (4), 967–1012.

Pesaran, M. H., Y. Shin, and R. P. Smith (1999). Pooled Mean Group Estimation of Dynamic
Heterogeneous Panels. Journal of the American Statistical Association 94 (446), 621–634.

Raddatz, C. (2007). Are External Shocks Responsible for the Instability of Output in Low-income
Countries? Journal of Development Economics 84 (1), 155–187.

Sachs, J. D. (2001). Tropical Underdevelopment. Working Paper 8119, National Bureau of Econo-
mic Research.

Sarachik, E. S. and M. A. Cane (2010). The El Niño–Southern Oscillation Phenomenon. Cambridge
University Press.

Tsonis, A., K. Swanson, G. Sugihara, and P. Tsonis (2010). Climate Change and the Demise of
Minoan Civilization. Climate of the Past Discussions 6 (4), 801–815.

Ubilava, D. (2017). The ENSO Effect and Asymmetries in Wheat Price Dynamics. World Deve-
lopment 96, 490–502.

Ubilava, D. and C. Helmers (2013). Forecasting ENSO with a Smooth Transition Autoregressive
Model. Environmental Modelling & Software 40 (1), 181–190.

Ubilava, D. and M. Holt (2013). El Niño Southern Oscillation and its Effects on World Vegetable
Oil Prices: Assessing Asymmetries using Smooth Transition Models. Australian Journal of
Agricultural and Resource Economics 57 (2), 273–297.

Zebiak, S. E., B. Orlove, Á. G. Muñoz, C. Vaughan, J. Hansen, T. Troy, M. C. Thomson, A. Lustig,
and S. Garvin (2015). Investigating El Niño–Southern Oscillation and Society Relationships.
Wiley Interdisciplinary Reviews: Climate Change 6 (1), 17–34.

30



Appendix

Figure A1: ENSO teleconnections

Source: http://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/gpc-outlooks/el-nino-la-nina/enso-impacts
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Figure A2: Heterogeneous impact of ENSO on growth
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Table A1: Descriptive Statistics by Country

Country ISO3 Climatic Zone T Growth Rate µAGR µEMP
mean s.d. min max

Angola AGO Temperate/Arid 30 1.7 8.4 -27.1 18.5 12.2 5.1
Burundi BDI Tropical/Humid 55 0.1 5.5 -15.4 19.1 52.8
Benin BEN Tropical/Humid 55 0.8 3.0 -7.2 7.0 33.1 45.1
Burkina Faso BFA Temperate/Arid 55 1.9 3.0 -4.3 8.0 33.9 83.6
Bangladesh BGD Tropical/Humid 55 1.8 3.9 -15.5 7.7 35.5 57.8
Bolivia BOL Tropical/Humid 55 1.2 3.5 -13.9 5.7 17.0 30.7
Brazil BRA Tropical/Humid 55 2.3 3.8 -6.6 11.2 9.7 22.2
Botswana BWA Temperate/Arid 55 5.5 5.4 -9.5 22.3 11.2 25.4
China CHN Temperate/Arid 55 6.9 6.8 -26.5 16.1 24.2 54.5
Cote d’Ivoire CIV Tropical/Humid 55 0.5 5.1 -14.8 13.0 23.3 48.3
Cameroon CMR Tropical/Humid 55 0.9 5.5 -13.0 18.6 25.9 76.9
Congo, Dem. Rep. COD Tropical/Humid 55 -1.5 6.0 -16.8 18.2 28.8
Congo, Rep. COG Tropical/Humid 55 1.5 5.3 -11.6 20.0 11.2
Colombia COL Tropical/Humid 55 2.3 2.1 -5.6 6.0 16.6 8.2
Costa Rica CRI Tropical/Humid 55 2.2 3.0 -9.8 6.7 10.6 20.5
Cuba CUB Tropical/Humid 45 2.6 6.0 -15.4 19.1 9.5 21.4
Dominican Republic DOM Tropical/Humid 55 3.1 5.0 -15.2 14.9 14.6 14.6
Algeria DZA Temperate/Arid 55 1.5 7.3 -21.6 31.0 9.9 16.5
Ecuador ECU Tropical/Humid 55 1.6 3.0 -6.5 10.8 19.9 11.4
Egypt, Arab Rep. EGY Temperate/Arid 50 2.6 2.8 -1.8 12.1 20.0 36.2
Ethiopia ETH Temperate/Arid 34 2.5 6.8 -13.9 10.4 50.5 24.0
Ghana GHA Tropical/Humid 55 1.0 4.3 -14.5 11.3 44.1 42.0
Gambia, The GMB Temperate/Arid 49 0.5 3.4 -7.4 9.0 25.8 31.5
Guinea-Bissau GNB Tropical/Humid 45 0.5 6.9 -29.6 15.8 48.6
Guatemala GTM Tropical/Humid 55 1.3 2.3 -6.1 6.6 12.6 35.9
Honduras HND Tropical/Humid 55 1.4 2.9 -4.4 7.2 23.4 44.0
Indonesia IDN Tropical/Humid 55 3.2 3.4 -14.4 7.9 16.6 47.8
India IND Temperate/Arid 55 3.3 3.2 -7.4 8.8 30.3 53.4
Jamaica JAM Tropical/Humid 49 0.6 4.4 -7.8 16.2 6.9 20.5
Kenya KEN Temperate/Arid 55 1.5 4.4 -10.6 17.9 32.3
Lao PDR LAO Tropical/Humid 31 4.3 3.0 -4.8 10.9 43.9
Sri Lanka LKA Tropical/Humid 54 3.5 2.2 -2.3 8.3 8.8 36.2
Lesotho LSO Temperate/Arid 55 3.2 5.7 -15.5 23.8 26.4 35.8
Morocco MAR Temperate/Arid 49 2.9 3.7 -6.9 10.7 15.2 24.1
Madagascar MDG Tropical/Humid 55 -0.9 3.9 -15.3 6.8 29.4 77.4
Mexico MEX Temperate/Arid 55 1.8 3.2 -7.5 8.5 7.3 17.4
Mali MLI Temperate/Arid 48 1.7 5.1 -9.3 18.1 44.6 41.5
Myanmar MMR Temperate/Arid 55 4.1 5.8 -12.9 12.8 41.5 66.5
Mongolia MNG Temperate/Arid 34 3.1 5.3 -10.3 15.3 21.5 40.6
Mozambique MOZ Tropical/Humid 35 3.1 6.9 -17.4 23.0 32.1
Mauritania MRT Temperate/Arid 54 1.1 6.0 -7.8 24.0 31.4
Mauritius MUS Tropical/Humid 39 3.7 3.2 -11.6 8.9 10.4 10.1
Malawi MWI Temperate/Arid 55 1.4 5.1 -10.5 15.6 40.5
Malaysia MYS Tropical/Humid 55 3.8 3.3 -9.6 9.0 19.8 20.8
Namibia NAM Temperate/Arid 35 1.0 3.3 -4.5 11.0 9.3 30.0
Niger NER Temperate/Arid 55 -0.7 5.6 -19.3 10.3 40.1
Nigeria NGA Tropical/Humid 55 1.5 8.1 -17.6 30.3 32.7 48.1
Nicaragua NIC Tropical/Humid 55 0.5 5.9 -28.6 10.7 19.5 37.2
Nepal NPL Temperate/Arid 55 1.8 2.7 -5.2 7.2 50.7 71.9

continued on next page
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Table A1 – continued from previous page

Country ISO3 Climatic Zone T Growth Rate AGR EMP
mean s.d. min max

Pakistan PAK Temperate/Arid 55 2.5 2.2 -2.2 8.4 29.7 49.4
Panama PAN Tropical/Humid 55 3.1 4.3 -15.2 10.4 6.5 23.4
Peru PER Tropical/Humid 55 1.6 4.8 -14.2 10.2 12.1 8.0
Philippines PHL Tropical/Humid 55 1.7 3.0 -9.8 6.0 21.5 43.3
Papua New Guinea PNG Tropical/Humid 54 1.6 4.7 -6.4 15.3 36.6 72.3
Paraguay PRY Tropical/Humid 55 2.5 3.9 -5.8 12.5 18.9 11.7
Sudan SDN Temperate/Arid 55 1.4 5.4 -9.1 12.9 39.0
Senegal SEN Temperate/Arid 55 0.0 3.5 -9.3 6.1 18.9 39.9
Sierra Leone SLE Tropical/Humid 55 0.6 6.8 -22.3 20.5 43.8 68.5
El Salvador SLV Tropical/Humid 50 1.1 3.8 -13.3 6.1 12.4 23.2
Swaziland SWZ Temperate/Arid 45 2.8 4.2 -5.1 17.0 20.0
Chad TCD Temperate/Arid 55 0.9 8.0 -23.0 28.7 40.9
Togo TGO Tropical/Humid 55 1.0 5.8 -17.1 12.3 36.6
Thailand THA Tropical/Humid 55 4.4 3.3 -8.7 11.3 17.8 55.0
Tunisia TUN Temperate/Arid 50 2.8 3.3 -3.9 15.2 15.1 26.4
Uganda UGA Tropical/Humid 33 2.5 3.0 -6.4 8.1 47.1 71.4
Vietnam VNM Tropical/Humid 31 4.9 1.8 0.4 7.8 20.5 57.6
South Africa ZAF Temperate/Arid 55 1.0 2.5 -4.6 6.1 5.5 7.7
Zambia ZMB Temperate/Arid 55 0.2 4.7 -10.9 13.0 15.2 62.1
Zimbabwe ZWE Temperate/Arid 55 0.1 6.7 -18.9 18.6 17.1 64.5

Note: T is the number of growth rate observations available between 1961 and 2015; the growth rate is defined as
the per capita GDP growth rate measured in percentage terms. AGR is the within–country average of the
agriculture value added (% of GDP); EMP is the within–country average of the employment share in agriculture (%
of total employment).
Sources: The World Bank, and the Center for International Earth Science Information Network.
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Table A2: Placebo Tests

Tropical/Humid Temperate/Arid Africa Americas Asia-Pacific

Dependent Variable: per capita GDP growth rate
SSTt+2|SSTt+1 ≥ 0 −0.315* −0.198 −0.372 −0.293 0.031
SSTt+2|SSTt+1 < 0 0.085 0.454 0.186 0.121 0.529*

SSTt|SSTt−1 ≥ 0 −0.755**‡ −0.429 −0.857**† −0.313 −0.346
SSTt−1|SSTt−1 ≥ 0 −1.259**‡ −0.227* −1.052* −0.475 −0.598
SSTt|SSTt−1 < 0 −0.298 0.217 0.027 −0.271 −0.116
SSTt−1|SSTt−1 < 0 0.694* −0.319 −0.037 0.399 0.854*

Dependent Variable: population growth rate
SSTt|SSTt−1 ≥ 0 0.028 0.039 0.038 0.016 0.038
SSTt−1|SSTt−1 ≥ 0 0.009 0.044 0.016 0.013 0.059
SSTt|SSTt−1 < 0 −0.004 −0.010 −0.012 0.001 0.000
SSTt−1|SSTt−1 < 0 0.034 −0.006 0.030 0.004 −0.004

Note: in all instances, fixed effects model with lag order of one are applied; standard errors (not reported here) are
adjusted to account for spatial autocorrelation of arbitrary form within 2,000 km and serial correlation over three
years as per Conley (1999); ** and * denote statistical significance at 0.01 and 0.05 levels; ‡ and † denote
statistical significance at 0.01 and 0.05 levels after Bonferroni correction.
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Table A3: Nonlinear Impact of ENSO in Subsets of Countries

Tropical/Humid Temperate/Arid Africa Americas Asia-Pacific

Countries with population greater than 5 million (n=56)
SSTt|SSTt−1 ≥ 0 −0.989**‡ −0.543* −0.981**‡ −0.715* −0.512*

SSTt−1|SSTt−1 ≥ 0 −1.379**‡ −0.535 −1.136* −0.717 −1.094
SSTt|SSTt−1 < 0 −0.351 0.165 0.069 −0.421 −0.283
SSTt−1|SSTt−1 < 0 0.655* −0.464 −0.289 0.211 1.157**†

Countries with population less than 100 million (n=61)
SSTt|SSTt−1 ≥ 0 −0.811**‡ −0.711* −0.981**‡ −0.386 −0.533
SSTt−1|SSTt−1 ≥ 0 −1.405**‡ −0.427 −1.144**† −0.530 −1.095
SSTt|SSTt−1 < 0 −0.297 0.181 −0.019 −0.305 −0.073
SSTt−1|SSTt−1 < 0 0.699* −0.852* −0.165 0.349 0.373

Note: the population numbers are for 2010; n denotes the number of countries; in all instances, the fixed effects
model with lag order of one are applied; standard errors (not reported here) are adjusted to account for spatial
autocorrelation of arbitrary form within 2,000 km and serial correlation over three years as per Conley (1999);
** and * denote statistical significance at 0.01 and 0.05 levels; ‡ and † denote statistical significance at 0.01 and
0.05 levels after Bonferroni correction.
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