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Optimizing over all of the states of the world together might be difficult even
for a machine. This paper adds to the behavioral literature by introducing a model,
in which the agent aggregates the states together, even though she is aware of the
entire state space. As a result of the state aggregation, the person solves several
problems with fewer variables instead of the initial problem with the entire state
space. When the person is SEU-maximizer, the decisions are not affected by the
way the states get aggregated. In our model people still have subjective priors over
states and events, however, they lump some states together in a non-linear way,
which leads to different choices. The paper provides axioms for a state aggregation
model, discusses identification of the state aggregation from choices in a complete
market setting, discusses comparative statics due to changes in the state aggregation
and demonstrates how the model explains a number of ambiguity paradoxes.

1 Introduction

Economists usually assume that people have perfect computational abilities and a good un-

derstanding of how the world works. However, in reality, optimizing over all of the states of

the world together might be difficult even for a machine. The behavioral literature provides

good insights into different ways that people might simplify decision-making. This paper adds

to the discussion by introducing a model, in which the agent aggregates the states together,

even though she is aware of the entire state space. There might many reasons for doing this: a

large number of states, states similar to one another, etc. As a result of state-aggregation, the
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person solves several problems with fewer variables instead of the initial problem with the entire

state space. When the person is Subjective Expected Utility (SEU)-maximizer, the decisions are

not affected by the way the states get aggregated. However, a vast literature (Ellsberg (1961),

Kahneman and Tversky (1979), Halevy (2007), etc.) demonstrates that SEU does not describe

peoples choices in practice. We offer a model that is a slight deviation from SEU: people still

have subjective priors over states and events, however, they lump some states together in a

non-linear way. We obtain that various methods of state aggregation lead to different choices.

For this reason, as this paper demonstrates, the state-aggregation of each individual might be

identified from observed choices.

To illustrate the idea of state aggregation consider the following example. Imagine a person

who has just bought a car and needs to choose an insurance plan. Consider three states of the

world: an accident with the agent at fault, an accident with someone else at fault, and a natural

disaster. An insurance policy consists of three corresponding deductibles. First, suppose that the

agent is a person that does not aggregate states. Generally, her choice is a bundle of deductibles

such that her consumption is smoothed between all three states. Note that, in this case, there

is no state aggregation, and her subjective partition is the whole state space of the world. Next,

imagine a person sitting in front of an insurance agent and reading through the book with

descriptions of insurance plans and conditions. The book is difficult to read: it is written in

a small font and includes too many conditions. To do a thorough choice is too complicated.

The person clearly understands the state ”accident with the agent at fault.” However, states

”accident with the other party at fault” and ”natural disaster” are not that different from the

agent’s perspective in both of these cases it is not agent’s fault. Thus, in order to simplify her

decision process, the person combines collision and natural disaster into event ”not my fault.”

The presence of the state-aggregation changes the way that the agent thinks about the world:

Instead of all three states, the state space is partitioned into aggregated events ”my fault” and

”not my fault.” Moreover, the individual generally wants to smooth her consumption in two

ways: (1) between her aggregated events, and (2) between the states inside the events. As a

result, the choice of deductibles will differ from the insurance plan under no state aggregation,

implying that the state aggregation might be identified from choices.
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In most economic situations, researchers treat the decision-making process like a black box,

and all differences in behavior are usually explained by differences in preferences or information.

This paper allows for situations in which agents with the same information and preferences

might make different choices due to heterogeneity in the state aggregation. Moreover, such

behavior cannot be obtained by providing the agent with some kind of incomplete information,

which is present in the model in a form of the subjective probabilities of the states. Incomplete

information under no state-aggregation would imply smoothing consumption between all states

given some priors. Choices in our model under non-trivial state aggregation do not satisfy

consumption-smoothing across all states with any subjective probabilities.

Note that the state aggregation can be interpreted as a frame in Salant and Rubinstein (2008).

The authors point it out that ”real-life behaviour often depends on observable information,

other than the set of feasible alternatives, which is irrelevant in the rational assessment of the

alternatives but nonetheless affects behaviour.” One of the examples they use is a voter that may

be influenced by the order of candidates on a ballot, and they call such additional information

a frame. In this paper, an insurance company decides how to formulate terms and conditions:

which states should be grouped in which section, the order of the sections, which information

should be in the footnote, etc. This kind of information (frame) should be irrelevant to the

rational agent, however, in our model, it defines the state aggregation.

In addition, the notion of a state aggregation is very close to intermediate information. Li

(2011) introduced a concept of intermediate information – information that arrives after a choice

has been made and before an outcome is realized. The author axiomatizes preference relations

over pairs of acts and intermediate information together. In order to obtain such preference

relations over pairs, Li derives preference relations between acts under some specific information

by using conditional preferences and basic, ”no information” preferences as primitives. A state

aggregation can be interpreted as fixed intermediate information. However, it requires different

axiomatization because observable primitives are different.

Undoubtedly, understanding the state aggregation is important for researchers and policy-

makers: It is easy to imagine a situation, in which an insurance company might be interested

in complicating terms and conditions in order to nudge agents to aggregate states in a desired
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way. Social planner might want to prevent the insurance company from doing so, for example,

by restricting choice set of insurance plans.

In this paper, we (1) offer a model of state aggregation and axioms that define the represen-

tation of the preferences; (2) identify the state aggregation from observable choices; (3) provide

comparative statics for an insurance company; and, (4) demonstrate how the model explains a

number of ambiguity paradoxes.

First, we provide axioms and the representation of the preferences with state aggregation.

We assume that only preferences over acts are observed. Thus, our primitive is preferences

over acts under some state aggregation from which we derive conditional preferences. We define

conditional preferences only for events that we call ”aggregating.” Such events satisfy a property

similar to Savage’s Sure Thing Principle. After that, if there is a partition of the whole state space

that consists of aggregating events only, we provide a general representation of the preferences.

Note that the representation is recursive in its nature: The value on events is defined in the first

(conditional) stage, and later the value of the act (ex-ante stage) is a function of the values of

the events.

Second, we suggest the simplest non-SEU model of the state aggregation: We assume that the

conditional functional that represents the value at each event is a positive non-affine transfor-

mation of some SEU over the states in each event. Furthermore, the ex-ante functional is just

an expected value of the events. We call this model State Aggregation SEU (SASEU).

Third, we show identification of the unobservable state aggregation, priors and utility from

choices and prices in a complete market under SASEU. First, we use the first order conditions

to determine the state aggregation. Note that SASEU implies SEU inside of each event, and,

hence, produces the same marginal utility ratios when taken between the states inside of the

same event. However, when the similar condition is obtain from two states from the different

events, it differs from SEU by including additional variables. The last leads to identification of

each event, and, thus, the state aggregation. The rest is standard: (1) SEU inside of each event

(conditional stage) provides with conditional probabilities and utility up to affine transformation;

and, (2) SEU over events (ex-ante stage) delivers probabilities of the events together with the

transformation applied to the conditional value.
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Fourth, we provide comparative statics on how consumption in each state will change due to

changes in the state aggregation. An interesting property holds: whenever something changes in

the state aggregation, consumption in all unaffected events moves in the same direction. When

an event is being split into two, the direction of change in consumption depends on the current

values at the future events. If the current value at one of the events is higher than at another,

then consumption smoothing over the states will force the values get closer to each other under

the proposed change. Thus, consumption in the states of the event with higher value will fall,

while consumption in the states of the event with lower value will increase. On one hand, these

implications could be used by an insurance company or portfolio manager to increase their profit.

On the other hand, the social planner could use the results to prevent undesirable behaviors.

Finally, SASEU offers an alternative explanation of ambiguity paradoxes suggested in Ellsberg

(1961), Machina (2009) and Machina (2014). Halevy (2007) demonstrates empirical evidence of

the relationship between non-reduction of compound lotteries and ambiguity aversion. In our

model, there is no need for ambiguity or multiple priors to produce the phenomena. The agent

has reasonable subjective probabilities of the states. Nevertheless, aggregation of ”ambiguity”

states together and the curvature in the conditional functional contradicts the reduction of

compound lotteries. And that is why, similarly to Dillinberger and Segal (2015), our model is

able to explain different ambiguity paradoxes.

Section 2 introduces the model. Section 3 discusses the identification of the state aggregation

from choices and prices in the complete market setting. Comparative statics is covered in

Section 4. Section 5 demonstrates how SASEU explains ambiguity paradoxes. Axioms and the

representation results are in Section 6. Section 7 concludes. All proofs are provided in Appendix.

2 State Aggregation SEU

We start with introducing State Aggregation Subjective Expected Utility (SASEU) model. The

value functional of the consumer is defined in a recursive manner and consists of two stages: (1)

the conditional stage in which several states are combined into one event and the value of an

act is evaluated at the event, and (2) the ex-ante stage in which an act is evaluated across the

events of the defined state aggregation.
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Definition 1. The agent’s behavior is said to exhibit SASEU Representation if there exist a

partition of the state space π, probabilities P (s|A) and P (A|π) for any state s ∈ A ∈ π, a

continuous monotone function u : X → R, and an increasing function φ : R→ R such that the

agent optimizes the functional V (∙|π):

V (x|A) = φ

(
∑

s∈A

u(x(s))P (s|A)

)

V (x|π) =
∑

A∈π

V (x|A)P (A).

Notice that we assume that V (∙|π) is a regular SEU functional, while V (∙|A) is a positive

transformation of a SEU functional in the conditional stage. If φ(∙) is linear, then the agent is

a regular SEU-maximizer.

A set of axioms for the above representation is provided in Section 6. Definition 1 implies that

the agent evaluates each act given a partition by a folding-back procedure: First, she aggregates

states into event A and evaluates the act x given every such event A in the partition π:

V (x|A) = φ

(
∑

s∈A

u(x(s))P (s|A)

)

,

where P (s|A) is the conditional probability of state s given event A. Second, the agent

evaluates the act across events that form her state aggregation. Thus, at the ex-ante stage the

agent’s value of the act is obtained as expected utility with the conditional value functional as

a utility:

V (x|π) =
∑

A∈π

V (x|A)P (A),

where P (A) is probability of event A.

Example 1: The agent chooses a home insurance policy under three states of the world:

natural disaster, robbery, and no accident.

Suppose that the probability of no accident (s1) is 90%, the probabilities of robbery (s2) is

7% and 3% is the probability of natural disaster (s3). Imagine two different situations: (1) the

agent does not aggregate states, and her state space is π0 = {s1, s2, s3}; and (2) the agent has
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difficulty optimizing over three states, and she splits the whole outcome space into events ”no

accident” A1 = {s1} and ”accident” A2 = {s2, s3}. We denote the state aggregation in this case

as π = {A1, A2}.

no accident robbery disaster no accident accident

no accident robbery disaster

In situation (1), the ex-ante stage implies regular evaluation over the whole state space. Thus,

the agent’s functional will be

V (x|π0) = 0.9φ(u(x1)) + 0.07φ(u(x2)) + 0.03φ(u(x3)),

where xi denotes consumption in state si.

In situation (2), the agent’s state aggregation π consists of two events, A1 and A2. In addition,

consider that the agent updates priors using Bayes’ rule. Thus, the set of ex-ante priors is

P (A1) = 0.9 and P (A2) = 0.1. In the case of no accident, the conditional on event A1 probability

is degenerate: P (s1|A1) = 1. If the event is ”accident,” then the conditional on event A2

probabilities are P (s2|A2) = 0.7 and P (s3|A2) = 0.3. Then the value functional will be

V (x|π) = 0.9φ(u(x1)) + 0.1φ (0.7u(x2) + 0.3u(x3) ).

As long as φ(∙) is not linear, maximization of V (x|π0) and V (x|π) will result in different solutions.

3 Identification in the market

In this section, we show how to identify the subjective partition from choices of Arrow securities

and their prices. Even if Arrow assets are not directly available in the market, as long as the

market is complete, Arrow prices can always be uniquely recovered.
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3.1 Deductibles as Arrow assets

Note that the problem of choosing an insurance plan that contains deductibles can be represented

as a choice among Arrow securities. In order to see this, consider the following example.

Example 2: Suppose that an agent needs to choose an insurance plan while considering three

states of the world, as before: robbery with losses L1; a natural disaster with losses L2; and no

accident, which implies no loss. The price of insurance consists of the sum of prices of chosen

deductibles in both states of occurrence. We assume that price q(d) of each deductible d is linear

in its amount d: q(d) = a − pdd, where a is a constant state premium. Thus, we can define the

price of a $1 deductible decrease as pd = q(d)− q(d+1), which is constant for any amount d due

to assumed linearity. Notice that pd is the price of a corresponding Arrow security: decreasing

the deductible by $1 in some state is equivalent to increasing consumption by $1 in the same

state.

We denote the deductible in the case of robbery as d1, the price of $1 of deductible in this

state as pd1 , and a1 as the state premium. Similarly, d2, pd2 , and a2 are the deductible, the $1

price in the case of the natural disaster, and the state premium, respectively. Thus, the total

price of the insurance plan (d1, d2) is p = (L1 − d1)pd1 + a1 + (L2 − d2)pd2 + a2. The agent has

income I and optimizes consumption c = (c1, c2, c3) in all states of the world given some state

aggregation π. All the money left (s) after paying for insurance is used for consumption during

the year. Thus, the agent’s problem is

V (c|π) → max

s.t. (L1 − d1)pd1 + (L2 − d2)pd2 + a1 + a2 + s = I

c1 = s − d1; c2 = s − d2; c3 = s.

We now rewrite the problem in terms of Arrow securities. Notice that consumption bundle

c = (c1, c2, c3) is exactly the portfolio of Arrow assets that the agent chooses. The only thing

left to do is to find Arrow prices (p1, p2, p3) and rewrite the budget constraint in an appropriate

form. Denote Ĩ = I −L1p1 −L2p2 − a1 − a2 the agent’s total endowment when taking potential
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losses and all state premiums into account. Also, as mentioned above, p1 = pd1 and p2 = pd2 .

Then, we can rewrite the budget constraint as

−d1pd1 − d2pd2 + s = (c1 − s)p1 + (c2 − s)p2 + s = c1p1 + c2p2 + c3(1 − p1 − p2) = Ĩ .

Thus, p3 = 1 − p1 − p2 and the agent’s problem is

V (c|π) → max

s.t. c1p1 + c2p2 + c3p3 = Ĩ .

As a consequence, if we observe the choices of deductibles with their prices and the agent’s

income, we can recover the amount of Arrow securities/consumption in each state.

3.2 Non-parametric identification example

Suppose that Ω = {s1, s2, s3}, partition π = {A1, A2}, where A1 = {s1} and A2 = {s2, s3}, and

priors are such that pA1 + pA2 = 1, P (s1|A1) = 1 and P (s2|A2) + P (s3|A2) = 1. Consider that

a complete set of Arrow securities is available on the market.1 The agent purchases a bundle of

Arrow securities that maximizes her value given a certain amount of income I and the price pi

of an Arrow security that pays 1 in state i:

V ((x1, x2, x3)|π) → max
x

s.t. p1x1 + p2x2 + p3x3 = I.

Choices x = (x1, x2, x3), prices p = (p1, p2, p3) and income I are observed. We assume that

all possible combinations of (p, I) are available. The purpose is to identify the state aggregation

π, utility function u(∙), transformation function φ(∙), and priors pA1 , pA2 , P (s2|A2), P (s3|A2).

1An Arrow security pays one unit in a specified state and zero otherwise.
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The agents solves her maximization problem and chooses some bundle x:

pA1φ(u(x1)) + pA2φ (P (s2|A2)u(x2) + P (s3|A2)u(x3)) → max
x

s.t. px
1x1 + px

2x2 + px
3x3 = I.

Hence, if λ is a Lagrange multiplier, then the first order conditions are

pA1φ
′(u(x1))u

′(x1) = λpx
1

pA2φ
′ (P (s2|A2)u(x2) + P (s3|A2)u(x3))p(s2|A2)u

′(x2

)
= λpx

2

pA2φ
′ (P (s2|A2)u(x2) + P (s3|A2)u(x3))p(s3|A2)u

′(x3

)
= λpx

3 .

Two states from the same event: If we pick s2 and s3, we obtain

p(s2|A2)
p(s3|A2)

u′(x2)
u′(x3)

=
px
2

px
3

. (1)

Now choose some other bundle y = (y1, y2, y3) such that y2 = x2, but y3 6= x3. Then we

observe similar first order conditions:

p(s2|A2)
p(s3|A2)

u′(y2)
u′(y3)

=
py
2

py
3

. (2)

After dividing (1) by (2), we obtain

u′(y3)
u′(x3)

=
px
2

px
3

py
3

py
2

. (3)

Two states from different events: We repeat the above derivation for states s1 and s2:

pA1

pA2p(s2|A2)
φ′(u(x1))u′(x1)

φ′ (P (s2|A2)u(x2) + P (s3|A2)u(x3))) u′(x2)
=

px
1

px
2

. (4)

Choose another bundle z = (z1, z2, z3) such that z1 = x1, but z2 6= x2. After dividing (4) by

10



the corresponding first order condition for bundle z, we get

φ′ (P (s2|A2)u(z2) + P (s3|A2)u(z3)))
φ′ (P (s2|A2)u(x2) + P (s3|A2)u(x3)))

u′(z2)
u′(x2)

=
px
1

px
2

pz
2

pz
1

. (5)

Compare now (3) and (5). In (3), the left side does not depend on values of x1, y1 and x2 = y2.

Thus, if we pick other bundles with the same x3 and y3, we will obtain the same value of the

ratio in (3). In (5), the left side depends on x3 and z3. So as long as φ(∙) is not a linear function,

changing x3 and z3 while keeping everything else constant will result in different values on the

right side of (5). Hence, we know that the state aggregation is π = {{s1}, {s2, s3}}.

Now note that by choosing different values of x3 and y3 in (3), we can identify u(∙) up to affine

transformation. After that we consider (1) again and identify the probability ratio P (s2|A2)
P (s3|A2) . The

last means that we can identify the probabilities themselves:

P (s2|A2)
P (s3|A2)

= c and P (s2|A2) + P (s3|A2) = 1 ⇒ P (s2|A2) =
c

c + 1
and P (s3|A2) =

1
c + 1

.

In order to identify φ(∙), we consider (5) again. u(∙), P (s2|A2) and P (s3|A2) have already

been identified, hence, we can obtain the value of the ratio φ′(P (s2|A2)u(z2)+P (s3|A2)u(z3)))
φ′(P (s2|A2)u(x2)+P (s3|A2)u(x3))) . By

choosing different x2, x3, z2 and z3, we identify φ(∙) up to affine transformation.

The only unknown variables left are pA1 and pA2 . However, we obtain
pA1
pA2

from (4). Finally,

given that pA1 + pA2 = 1, we identify pA1 and pA2 .

3.3 Identification

Thus, the agent wants to buy a portfolio of securities and aggregates states of the world into

some partition. The purpose of this section is to identify the agent’s state aggregation and

priors from choices of Arrow assets and their prices. In order to do so, we generalize the above

non-parametric example; however, the idea behind the method stays the same.

In order to achieve convexity of indifference curves and have the optimality condition hold in

each region, we use the following technical assumption:

Assumption 1. u(∙) and φ(∙) are strictly increasing twice-differentiable functions defined on a

compact support and such that φ
(∑

s∈A qsu(xs)
)

is concave for any A ⊆ Ω and any probability
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measure q such that
∑

s∈A qs = 1.

Assumption 2 guarantees that the agent is not a SEU-maximizer unless the agent’s state

aggregation is the whole state space, i.e. no state aggregation. It is crucial for identification

because different partitions do not affect choices if the individual behaves according to SEU.

Assumption 2. φ(∙) is not a linear function.

Assumption 3 forbids aggregation of all states together. It is necessary because the agent’s be-

havior under no aggregation and under full aggregation would follow SEU, making it impossible

to identify the exact situation without any additional information. 2

Assumption 3. π is not equal to {Ω}.

Theorem 1. If Assumptions 1–3 hold, then the state aggregation π and probabilities pA and

P (s|A) are identified for any s ∈ A ∈ π. In addition, functions u(∙) and φ(∙) are identified up

to affine transformation.

The proof of the theorem follows the identification procedure shown in the previous subsection.

4 SASEU and insurance

In this section, we discuss how changes in the state aggregation might affect consumption.

Suppose there are S states of the world Ω = {s1, . . . , sS}. Consider an agent who chooses

consumption c = (c1, . . . , cS) for every state of the world. Income is I, the price of 1 unit of

consumption in state s is ps, and the state probabilities are objective and denote them by P (s).

Consider first an agent who does not aggregate states. Then the problem she solves is

∑

s∈Ω

P (s)φ(u(cs)) → max
c1,...,cS

s.t.
∑

s∈Ω

pscs = I.

2As long as φ(∙) is not linear, Ω and {Ω} will produce different choices. Both will be consistent with SEU,
however, with different utilities.
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For any two states s1, s2 ∈ Ω, the first order condition is

ps1

ps2

=
P (s1)
P (s2)

φ′(u(cs1))
φ′(u(cs2))

u′(cs1)
u′(cs2)

. (6)

Now suppose that the agent aggregates states into π and updates probabilities according to

the definition of conditional probability, i.e., if s ∈ A then P (s) = P (A)P (s|A). Hence, the

agent’s problem is

∑

A∈π

P (A)φ

(
∑

s∈A

P (s|A)u(cs)

)

→ max
c1,...,cS

s.t.
∑

s∈Ω

pscs = I.

If s1 ∈ A1 and s2 ∈ A2, then the first order condition is

ps1

ps2

=
P (s1)
P (s2)

φ′
(∑

s∈A1
P (s|A1)u(cs)

)

φ′
(∑

s∈A2
P (s|A2)u(cs)

)
u′(cs1)
u′(cs2)

. (7)

Note that
u′(cs1 )

u′(cs2 ) is present in both equations and is responsible for consumption smoothing

due to risk-aversion. However,
φ′
(∑

s∈A1
P (s|A1)u(cs)

)

φ′
(∑

s∈A2
P (s|A2)u(cs)

) is different. If φ(∙) is concave then the ratio

produces consumption smoothing over events due to risk-aversion over the events. On the other

hand, if φ(∙) is convex then the agent is risk-loving towards the events. Thus, in combination

with consumption smoothing over states that comes from u(∙), the state aggregation might have

different effects on choices.

The next theorem provides comparative statics in the situation, when one of the events is split

into two in the state aggregation. Note that combining two events is also included, and it will

produce an opposite result.

Theorem 2. Consider two partitions π and π̃ such that π̃ = {A1\B,B,A2, . . . , Ak} and π =

{A1, A2, . . . , Ak}. In addition, suppose that both u(∙) and φ(∙) are concave and differentiable.

Then

1. VB(c) > VA1\B(c) ⇔ VB(c̃) > VA1\B(c̃) ⇔ c̃j < cj , c̃i > ci for any si ∈ A1\B and sj ∈ B;
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2. VB(c) < VA1\B(c) ⇔ VB(c̃) < VA1\B(c̃) ⇔ c̃j > cj , c̃i < ci for any si ∈ A1\B and sj ∈ B;

3. VB(c) = VA1\B(c) ⇔ VB(c̃) = VA1\B(c̃) ⇔ c̃j = cj , c̃i = ci for any si ∈ A1\B and sj ∈ B.

Moreover, one of the following holds:

1. c̃s > cs for all s ∈ Ak and all k 6= 1;

2. c̃s < cs for all s ∈ Ak and all k 6= 1;

3. c̃s = cs for all s ∈ Ak and all k 6= 1.

The above theorem predicts the following: First, if a state does not belong to the affected

event, then the consumption in this state will change in the same direction as consumption in

other unaffected states and events. Second, if an event gets split into two, A1\B and B, and the

current value at one of them is greater (e.g., VB(c) > VA\B(c)), then consumption smoothing

over the events will push the values towards each other, making consumption in the states of

the event with the higher value (B) decrease, and the consumption in the states of the event

with the lower value (A1\B) increase. Third, if two events get aggregated, then the effect is

opposite. The pressure that pushed the values closer due to consumption smoothing from events

is gone. Hence, the values at these events will pull away from each other. The last means that

the consumption in the states of the event with greater value will increase even more and the

consumption in the states of the event with the lower value will decrease.

The above theorems applies to the insurance market as it was discussed in the previous

section. It is not unreasonable to imagine a situation in which an insurance company observes

current state-aggregation, probabilities, state prices and consumption. If the company is able

to manipulate the state aggregation, it will be interested in predicting corresponding changes in

deductibles and/or consumption. It would not be a difficult task if utilities were known, however,

this is a unrealistic assumption. Even if the company observed choices of the consumers for 10

years, given heterogenous consumers, it would be still impossible to evaluate utility function even

if the preferences are stable over time. The above theorem attempts to give some predictions in

this situation. Unfortunately, it relies on the comparison of current values at the events (VB(c)

vs. VA\B(c)), which still depends on the utility. However, in some situations it might be the
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case that all possible utility functions that could generate the observable consumption imply the

same relation between the values at the events. Consider the following example.

Example 3: Suppose that the insurance company is interested in splitting event A =

{s1, s2, s3, s4} into events B1 = {s1, s4} and B2 = {s2, s3}. The probabilities are P (s1|B1) = 0.3

and P (s4|B1) = 0.7, while P (s2|B2) = P (s3|B2) = 0.5 and P (B1) = P (B2). The current con-

sumption is c1 = 2, c2 = 4, c3 = 7 and c4 = 9 and the state prices are p1 = 1.8, p2 = 2.5,

p3 = 1.5 and p4 = 1. Note that by the Taylor expansion, we obtain the following.

u(c2) = u(c1) + u′(t1)(c2 − c1), where t1 ∈ [c1, c2]

u(c3) = u(c2) + u′(t2)(c3 − c2), where t2 ∈ [c2, c3]

u(c4) = u(c3) + u′(t3)(c4 − c3), where t3 ∈ [c3, c4]

Hence, the values at the events are

VB1(c) = 0.3u(c1) + 0.7u(c4) = u(c1) + 0.7u′(t3)(c4 − c3) + 0.7u′(t2)(c3 − c2) + 0.7u′(t1)(c2 − c1)

= u(c1) + 1.4u′(t3) + 2.1u′(t2) + 1.4u′(t1)

VB2(c) = 0.5u(c2) + 0.5u(c3) = u(c1) + u′(t1)(c2 − c1) + 0.5u′(t2)(c3 − c2)

= u(c1) + 2u′(t1) + 1.5u′(t2)

Thus, VB1(c) > VB2(c) if and only if 1.4u′(t3) + 0.6u′(t2) − 0.6u′(t1) > 0. Note that it depends

only on the values of the utility derivatives, for which we can establish bounds from the first

order conditions. Inside of the event A, the FOC implies u′(ck)
u′(cj)

= pk
pj

P (sj)
P (sk) . Hence, we get the

following.

u′(c1)
u′(c4)

= 4.2;
u′(c2)
u′(c4)

= 3.5;
u′(c3)
u′(c4)

= 2.1

For simplicity, we normalize u′(c4) = 1, then the bounds for the expression of the interest are

max(1.4u′(t3) + 0.6u′(t2) − 0.6u′(t1)) = 2.94 > 0

min(1.4u′(t3) + 0.6u′(t2) − 0.6u′(t1)) = 0.14 > 0
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Thus, we conclude that VB1(c) > VB2(c) and can predict that splitting event A into B1 and B2

will result in decrease of consumption in states s1 and s4, and increase of consumption in states

s2 and s3. One can easily generalize this approach.

5 Ambiguity Paradoxes

In this section, we go over well-known thought experiments that demonstrate problems that the

most prominent theories have in explaining behavior. Dillinberger and Segal (2015) explain the

paradoxes with the recursive nonexpected utility model of Segal (1987). The model assumes

that the agent has a distribution of priors over possible probability distributions and also uses

nonexpected utility functional for evaluation of each possibility. SASEU offers an alternative

explanation.

Ellsberg paradox

Consider the following famous paradox from Ellsberg (1961): there is an urn that contains 90

colored balls. 30 balls are red, all other balls are black and yellow, but it is unknown in which

proportion. One ball is randomly picked from the urn and four lotteries are considered:

A1 : 100$ if the ball is red

A2 : 100$ if the ball is black

B1 : 100$ if the ball is red or yellow

B2 : 100$ if the ball is black or yellow

The subjects are offered to choose separately between A1 and A2, and between B1 and B2.

It is a well-established fact that the majority of people prefer A1 � A2 and B2 � B1, which

contradicts the classical SEU. Many models were proposed to explain the paradox. We will add

one more to the list:

The state space consists of the states red (R), black (B) and yellow (Y), i.e., Ω = {R,B, Y }.

The agent might be naturally inclined to aggregate states B and Y into one event that we will

call BY . Thus, obtaining the state aggregation π = {R,BY }. The probabilities of the events in
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π are objective: P (R) = 1
3 and P (BY ) = 2

3 . The probabilities of the states in BY are subjective,

however, there is no reason to believe that P (B|BY ) 6= P (Y |BY ) due to the symmetry of the

situation. Hence, P (B|BY ) = P (Y |BY ) = 0.5. Let us demonstrate how a SASEU-maximizer

evaluates the above lotteries in this case:

V (A1) =
1
3
φ (u(100)) +

2
3
φ (u(0))

V (A2) =
1
3
φ (u(0)) +

2
3
φ (0.5u(100) + 0.5u(0)) .

Notice that V (A1) > V (A2) if and only if

0.5φ(u(100)) + 0.5φ(u(0)) > φ (0.5u(100) + 0.5u(0)) . (8)

The other two lotteries:

V (B1) =
1
3
φ (u(100)) +

2
3
φ (0.5u(100) + 0.5u(0))

V (B2) =
1
3
φ (u(0)) +

2
3
φ (u(100)) .

Moreover, V (B2) > V (B1) if and only if condition Equation (8) holds! The condition is trivially

satisfied if φ(∙) is concave.

Slightly-Bent Coin problem

In Machina (2014), the author offers the following thought experiment: an agent needs to

choose between two bets. The payout of the subject depends on a flip of a slightly-bent coin (it

is unknown in which direction the coin is bent) and the color of the ball drawn from the urn

that contains two balls, each of them can be black or white. Hence, the state space consists of

four states dependent on whether the ball is black or white and whether the coin lands heads or

tail, i.e., Ω = {BH,BT,WH,WT }. The bets are as follows.

Bet I: 8, 000$ if BH ; − 8, 000$ if BT

Bet II: 8, 000$ if WT ; − 8, 000$ if BT
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Machina argues that Choquet expected utility predicts indifference in this case, while real

people might have strong preferences for one of the bets.

Consider a SASEU-maximizer that aggregates states with different balls and the same coin

together. Thus, states BH and WH are aggregated into event H, and states BT and WT are

aggregated into event T , forming a subjective partition π = {H,T}. First of all, there is no

reason to believe that probabilities of white and black balls differ, so P (W |H) = P (B|H) =

P (W |T ) = P (B|T ) = 0.5. In the same manner, there is no reason to believe that the coin is

bent in specific direction and probabilities of heads and tail differ, implying P (H) = P (T ) = 0.5.

The value of each bet can be calculated as

V (I) = 0.5φ (0.5u(8, 000) + 0.5u(−8, 000)) + 0.5φ(u(0))

V (II) = 0.5φ (0.5u(0) + 0.5u(−8, 000)) + 0.5φ (0.5u(0) + 0.5u(8, 000)) .

Notice that as long as φ(∙) is not linear, the choice between Bet I and Bet II depends on the

exact values of the functions φ(∙) and u(∙). For example, if φ(x) =
√

x, u(−8, 000) = 0, u(0) = 2

and u(8, 000) = 4, then II � I. However, if we change only u(8, 000) = 3 and keeping the rest

the same, we will observe that I � II3.

Ambiguity at Low vs. High Outcomes problem

This paradox was also proposed in Machina (2014). The subject is asked to choose between two

urns. Both urns contain three balls, one of them is known to be red. Each of the other balls

can be either black or white. The value of c is defined as certainty equivalent of 50:50 bet for

0$ and 100$. The payoffs of the urns are shown in the Table.

Table 1: Ambiguity at Low vs. High Outcomes

Urn R B W

I 100$ 0$ c$
II 0$ c$ 100$

3In the latter case, u(∙) is concave and together with concave φ(∙) it generates preferences consistent with
Machina’s expectation about the ambiguity averse decision-maker.
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The most prominent ambiguity theories (MEU, Choquet, Smooth ambiguity and Variational

preferences) predict indifference between the urns. However, Machina argues that the subjects

might have strong preference towards one of the urns.

SASEU agent might naturally want to aggregate states B and W into event A for both urns.

Then probabilities of the events R and A are objective: P (R) = 1
3 and P (A) = 2

3 . In addition,

given event A, there is no reason to believe that probabilities of B and W are different for any

of the urns, thus, P (B|A) = P (W |A) = 0.5. Hence, the value of each urn is as follows.

V (I) =
1
3
φ (u(100)) +

2
3
φ (0.5u(c) + 0.5u(0)) =

1
3
φ (u(100)) +

2
3
φ (0.25u(100) + 0.75u(0))

V (II) =
1
3
φ (u(0)) +

2
3
φ (0.5u(c) + 0.5u(100)) =

1
3
φ (u(0)) +

2
3
φ (0.75u(100) + 0.25u(0)) .

Notice that as long as φ(∙) is not linear, dependent on φ(∙) and u(∙), any behavior might be

obtained. For example, if φ(x) =
√

x, u(0) = 0 and u(100) = 1, then I � II.

50:51 Example

This paradox is described in Machina (2009). An urn contains 101 balls, 50 of which are marked

either with 1 or 2, and 51 balls are marked either with 3 or 4. One ball is drawn at random.

The subject is offered to choose between lotteries f1 and f2, and between f3 and f4, payoffs for

which are shown in the table.

Table 2: 50:51 Example

Lottery E1 E2 E3 E4

f1 8,000$ 8,000$ 4,000$ 4,000$
f2 8,000$ 4,000$ 8,000$ 4,000$
f3 12,000$ 8,000$ 4,000$ 0$
f4 12,000$ 4,000$ 8,000$ 0$

Lotteries f3 and f4 are obtained from f1 and f2 by shifting 4,000$ and adding them to 8,000$.

Tail-separability in the Choquet model implies that f1 � f2 if and only if f3 � f4. Machina

argues that there is no reason for some subjects not to show preference reversal in this case.

A SASEU-maximizer will aggregate states E1 and E2 into event E12 and states E3 and E4
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into event E34. There is no reason for probabilities of E1 and E2 given event E12 to be different,

so P (E1|E12) = P (E2|E12) = 0.5. By analogy, P (E3|E34) = P (E4|E34) = 0.5. Probabilities

of E12 and E34 are objective and equal 50
101 and 51

101 correspondingly. Thus, the values of the

lotteries are

V (f1) =
50
101

φ (u(8, 000)) +
51
101

φ (u(4, 000))

V (f2) = φ (0.5u(8, 000) + 0.5u(4, 000))

V (f3) =
50
101

φ (0.5u(12, 000) + 0.5u(8, 000)) +
51
101

φ (0.5u(4, 000) + 0.5u(0))

V (f4) =
50
101

φ (0.5u(12, 000) + 0.5u(4, 000)) +
51
101

φ (0.5u(8, 000) + 0.5u(0)) .

Constructing a preference reversal example in this case is not as trivial as in other paradoxes,

however, it is not impossible. Suppose that u(0) = 0, u(4, 000) = 0.5, u(8, 000) = 1, u(12, 000) =

2 and φ(x) =






x, if x ≤ 1

x2, if x > 1
. Then we obtain that f2 � f1 and f3 � f4.

Reflection Example

This thought experiment was also introduced in Machina (2009). An urn contains 100 balls, half

of which is marked either with 1 or 2, and another half is marked either with 3 or 4. One ball

is drawn at random. The subject is offered to choose between lotteries f5 and f6, and between

f7 and f8, payoffs for which are shown in the table.

Table 3: Reflection Example

Lottery E1 E2 E3 E4

f5 4,000$ 8,000$ 4,000$ 0
f6 4,000$ 4,000$ 8,000$ 0
f7 0 8,000$ 4,000$ 4,000$
f8 0 4,000$ 8,000$ 4,000$

Choquet model implies that f5 � f6 if and only if f7 � f8, because f7 and f8 are obtained

from f5 and f6 by switching 0 and 4,000$. Machina argues that there is no difference between

lotteries f5 and f8, and between f6 and f7, implying that f5 � f6 if and only if f8 � f7. Thus,
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only indifference between four lotteries would be possible.

A SASEU-maximizer will aggregate states E1 and E2 into event E12 and states E3 and E4

into event E34. There is no reason for probabilities of E1 and E2 given event E12 to be different,

so P (E1|E12) = P (E2|E12) = 0.5. By analogy, P (E3|E34) = P (E4|E34) = 0.5. Probabilities of

E12 and E34 are objective and equal 0.5. Thus, the values of the lotteries are

V (f5) = V (f8) = 0.5φ (0.5u(4, 000) + 0.5u(8, 000)) + 0.5φ (0.5u(4, 000) + 0.5u(0))

V (f6) = V (f7) = 0.5φ (u(4, 000)) + 0.5φ (0.5u(8, 000) + 0.5u(0)) .

Notice that as long as φ(∙) is not linear, the indifference is not the only option. For example,

if φ(x) =
√

x, u(0) = 0, u(4, 000) = 4 and u(8, 000) = 8, then f5 � f6. Moreover, f5 � f6 if and

only if f8 � f7.

6 Axiomatization

6.1 Preliminaries

Suppose that X is a convex subset of consequences in R, and Ω is a finite set of states of the

world with an algebra Σ of subsets of Ω. We denote F a set of all acts, Σ-measurable finite

step functions: Ω → ΔX. Let M be a set of elements π, such that π ⊂ Σ is a partition of Ω.

Partitions of the state space represent different ways of state aggregation.

We denote for all f, g ∈ F , A ∈ Σ, fAg an act: fAg(s) = f(s) if s ∈ A, and fAg(s) = g(s) if

s /∈ A. The mixture of acts is defined statewise. We will abuse notation and define X as a set

of constant acts in what follows below.

6.2 Axioms and representation

The purpose of this section is to provide axioms of preference relation � between acts f over F

that can be represented by the model of state aggregation. We take as a primitive a preference

relation between acts. After that, we induce conditional preferences whenever we can guarantee

their completeness.
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First, we define the standard set of axioms. Notice that the independence axiom holds only

for constant acts.

Axiom 1. For all f, g, h ∈ F and x, y, z ∈ X: (i) � is complete and transitive; (ii) if λ ∈ (0, 1]:

x � y ⇔ λx + (1 − λ)z � λy + (1 − λ)z; (iii) if f � g, and g � h, then there exist λ, μ ∈ (0, 1)

such that λf +(1−λ)h � g and g � μf +(1−μ)h; (iv) if f(s) � g(s) for all s ∈ Ω, then f � g;

and (v) � is not degenerate.

In order to introduce state aggregation and obtain complete conditional preferences, we define

a concept of an aggregating event:

Definition 2. Event A is called aggregating if for any f, g, h, h′ ∈ F : fAh � gAh ⇔ fAh′ �

gAh′.

An aggregating event satisfies a property similar to Savage’s Sure Thing Principle. The inde-

pendence axiom does not hold in this model, so it is not equivalent to the existence of a unique

probability. The aggregating event implies that the value of the act at the event is the only

aspect that matters in act evaluation, and not each state value separately.

Now, for all aggregating events A, we define conditional preferences �A:

Definition 3. For all f, g, h ∈ F : f �A g ⇔ fAh � gAh.

Note that conditional preferences �A are complete and satisfy all analogous axioms from

Axiom 1.

Axiom 2 (State Aggregation - SA). There exists a partition π of Ω such that for any A ∈ π,

A is aggregating event.

Note that {Ω} (all states are aggregated) trivially is aggregating event, and, thus, there always

exists a trivial partition. In addition, Ω (all states are separate events) is another trivial partition

due to monotonicity.

Theorem 3. (Representation Theorem) A binary relation � satisfies axioms 1 and 2 if and only

if there exist a unique up to affine transformation nonconstant continuous monotone function

u : X → R, monotone continuous functionals I : R|π| → R and IAi : R|Ai| → R for each Ai ∈ π
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such that �A is represented by the unique preference functional V (∙|A) : F → R, and � is

represented by unique V (∙|π) : F → R such that

V (f |π) = I(V (f |A1), V (f |A2), . . . , V (f |An))

V (f |Ai) = IAi(u(f)).

Proof. Sufficiency: � is continuous and independent preference relation on a mixture space

X, thus, by the Mixture Space Theorem, it can be represented by a continuous and monotone

utility function u : X → R. Note that the same applies to �A on X.

Let �∗
A be preference relation on u(X): u(f) �∗

A u(g) if and only if f �A g. �∗
A is continuous,

independent and monotone preference relation on u(X), hence, there exists continuous and

monotone IA : u(X) → R that represents �∗
A. Thus, define V (f |A) = IA(u(f)).

Let �π be preference relation such that

V (f |A1)A1V (f |A2)A2...V (f |An) �π V (g|A1)A1V (g|A2)A2...V (g|An) ⇔ f � g.

�π is continuous, independent and monotone preference relation, hence, there exists continuous

and monotone I : R|π| → R that represents �π. Define V (f |π) = I(V (f |A1), . . . , V (f |An)).

Necessity: Define f � g if and only if V (f |π) ≥ V (g|π). Axiom 1 is straightforward. For

Axiom 2, we want to show that any event A ∈ π is aggregating. Thus, if fAh � gAh for some

f, g and h in F , then fAh′ � gAh′ for any h′ ∈ F . Without loss of generality, suppose that we

want to demonstrate it for A1.

fA1h � gA1h ⇔ V (fA1h|π) ≥ V (gA1h|π)

⇔ I(V (f |A1), . . . , V (h|An)) ≥ I(V (g|A1), . . . , V (h|An))

by monotonicity ⇔ V (f |A1) ≥ V (g|A1)

by monotonicity again ⇔ I(V (f |A1), . . . , V (h′|An)) ≥ I(V (g|A1), . . . , V (h′|An))

⇔ V (fA1h
′|π) ≥ V (gA1h

′|π) ⇔ fA1h
′ � gA1h

′.
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6.3 SASEU

Axiom 2 does not contradict the regular SEU behavior. Thus, if the agent is SEU-maximizer,

we will never be able to find any evidence to support or reject the theory. However, if at least

one of the functionals V (∙|Ai) or V (∙|π) is non-SEU, then we might observe some interesting

features in behavior. Note that if φ(∙) is linear, then the agent is a regular SEU-maximizer.

In order to obtain the SASEU representation, we need to add to the set the classical indepen-

dence axiom for conditional preferences and for ex-ante preferences over events.

Axiom 3 (Conditional Independence - CI). For any event A ∈ π, any acts f, g, h ∈ F and any

α ∈ (0, 1): f �A g if and only if αf + (1 − α)h �A αg + (1 − α)h.

Definition 4. Suppose that π = {A1, A2, . . . , An}, then for any act f ∈ F and event Ai ∈ π

define acts xAi
f and fπ: xAi

f ∼Ai f and fπ ∼ xA1
f A1x

A2
f A2 . . . xAn

f .

Axiom 4 (Ex-ante Independence - EI). For any acts f, g, h ∈ F and any α ∈ (0, 1): f � g if

and only if αfπ + (1 − α)hπ � αgπ + (1 − α)hπ.

Theorem 4. � are represented by SASEU with (π, u, φ, P ) and (π′, u′, φ′, P ′) if and only if u(∙)

is affine transformation of u′(∙), φ(∙) is affine transformation of φ′(∙) and both of them are linear

functions.
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A Appendix

A.1 Proof of Theorem 4

Suppose that there are two different partitions, π and π′. Denote a set π̃ = {C ∈ Σ : ∃A ∈

π,B ∈ π′ : C = A ∩ B}. Also, denote A a set of all aggregating events.

Lemma 1. If π, π′ ∈ A and C ∈ π̃, then C ∈ A.

Proof. Take events A ∈ π and B ∈ π′ such that C = A ∩ B. Then, fCx �A gCx ⇔ fCx(A \

C)h � gCx(A\C)h. The last relation is equivalent to fCh(B \C)x(A\C)h � gCh(B \C)x(A\

C)h ⇔ fCh �B gCh.

Now, by providing the same argument from event B back to A, one can easily obtain that

fCh �A gCh.

Lemma 2. Two different SASEU representations of � that satisfy Axioms 1–4 with partitions

π and π′ exist if there exists a SASEU representation with a denser partition π̃ = {C : A ∈

π,B ∈ π′, A ∩ B = C}.
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Proof. First, note that π̃ = {C : A ∈ π,B ∈ π′, A ∩ B = C} is a partition that consists of

aggregating events. Now we just need to show that Axioms 3 and 4 hold for this partition too.

Note that for any C ∈ π̃ we can define conditional preferences �C because C is an aggregating

event. Axiom 3 for �C follows trivially from Axiom 3 for �A, where C ⊆ A ∈ π.

Now we are left to show Ex-ante Independence for π̃. Any event A ∈ π consists of a number of

events from π̃: A = C1∪C2∪∙ ∙ ∙∪Ck. Then for any act f ∈ F : f ∼A xA
f ∼A xC1

f C1x
C2
f C2 . . . xCk

f .

By Conditional Independence:

αxA
f + (1 − α)xA

h ∼A αxC1
f C1x

C2
f C2 . . . xCk

f + (1 − α)xC1
h C1x

C2
h C2 . . . xCk

h .

Thus, f � g if and only if αfπ + (1 − α)hπ � gπ + (1 − α)hπ if and only if

αxA1
f A1x

A2
f A2 . . . xAn

f + (1 − α)xA1
h A1x

A2
h A2 . . . xAn

h � αxA1
g A1x

A2
g A2 . . . xAn

g + (1 − α)xA1
h A1x

A2
h A2 . . . xAn

h

if and only if

αxC1
f C1x

C2
f C2 . . . xCt

f + (1 − α)xC1
h C1x

C2
h C2 . . . xCt

h � αxC1
g C1x

C2
g C2 . . . xCt

g + (1 − α)xC1
h C1x

C2
h C2 . . . xCt

h ,

which is by definition f π̃ � gπ̃.

Lemma 3. If C ∈ A and C ⊆ A ∈ π, then for any act f ∈ F and xC
f ∈ X:

u(xC
f ) =

∑

s∈C

P (s|C)u(f(s)),

where P (s|C) = P (s|A)∑
s∈C P (s|A) .

Proof. Note that fCh ∼A xC
f Ch for any f, h ∈ F , then

VA(fCh) = φ




∑

s∈C

P (s|A)u(f(s)) +
∑

s∈A\C

P (s|A)u(h(s))





VA(xC
f Ch) = φ




∑

s∈C

P (s|A)u(xC
f ) +

∑

s∈A\C

P (s|A)u(h(s))



 .
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VA(fCh) = VA(xC
f Ch) implies that

∑

s∈C

P (s|A)u(f(s)) =
∑

s∈C

P (s|A)u(xC
f ) ⇒

u(xC
f ) =

∑

s∈C

P (s|A)
∑

s∈C P (s|A)
u(f(s)).

Proof of Theorem 4. Sufficiency is trivial. Thus, we will show only necessity.

By Lemmas 1 and 2, there exists π̃ that also represents �. Utility u(∙) is defined up to affine

transformation and by Lemma 3,

u(xC
f ) =

∑

s∈C

P (s|A)
∑

s∈C P (s|A)
u(f(s)).

We also know that ũ(xC
f ) =

∑
s∈C P̃ (s|C)ũ(f(s)) and u(∙) and ũ(∙) must agree on constant acts.

Hence, one is an affine transformation of another. The same argument applies to π′.

Moreover, for A = C1 ∪ ∙ ∙ ∙ ∪ Ck that consists of more than one event from π̃,

φ

(
∑

s∈A

P (s|A)u(f(s))

)

=
∑

Ci∈A

P̃ (Ci|A)φ̃




∑

s∈Ci

P (s|A)
∑

s∈Ci
P (s|A)

u(f(s))



 .

The latter implies that φ(∙) and φ̃(∙) are linear and affine transformations of each other.

A.2 Proof of Theorem 1

The agent purchases a bundle of Arrow securities that maximizes her value given a certain

amount of income I and the price pi of an Arrow security that pays 1 in state i:

V (x|π) → max
x

s.t.
∑

i

pixi = I.
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Hence, if λ is a Lagrange multiplier, then the first order condition for each state s ∈ A is

pAφ′

(
∑

s∈A

P (s|A)u(xs)

)

p(s|A)u′(xs) = λpx
s .

Pick two states si and sj .

Two states from the same event: If si and sj belong to the same event A, then

p(si|A)
p(sj |A)

u′(xsi)
u′(xsj )

=
px

si

px
sj

. (9)

Now choose two other bundles y and z such that ysi = xsi , zsj = xsj , but ysj 6= xsj and

zsi 6= xsi . Then we obtain

u′(ysj )

u′(xsj )
=

px
si

px
sj

py
sj

py
si

and
u′(xsi)
u′(zsi)

=
px

si

px
sj

pz
sj

pz
si

. (10)

Note that both left-side ratios depend only on payoffs at a related state and nothing else.

Thus, if payoffs at other states are changed, it must not affect the above ratios.

Two states from different events: We repeat the above derivation when states si and sj

are from different events Ai and Aj :

pAiP (si|Ai)
pAjp(sj |Aj)

φ′
(∑

s∈Ai
P (s|Ai)u(xs)

)
u′(xsi)

φ′
(∑

s∈Aj
P (s|Aj)u(xs)

)
u′(xsj )

=
px

si

px
sj

. (11)

After taking bundles y and z as before, we get

φ′
(∑

s∈Aj
P (s|Aj)u(ys)

)
φ′
(∑

s∈Ai
P (s|Ai)u(xs)

)

φ′
(∑

s∈Ai
P (s|Ai)u(ys)

)
φ′
(∑

s∈Aj
P (s|Aj)u(xs)

)
u′(ysj )

u′(xsj )
=

px
si

px
sj

py
sj

py
si

(12)

φ′
(∑

s∈Aj
P (s|Aj)u(zs)

)
φ′
(∑

s∈Ai
P (s|Ai)u(xs)

)

φ′
(∑

s∈Ai
P (s|Ai)u(zs)

)
φ′
(∑

s∈Aj
P (s|Aj)u(xs)

)
u′(xsi)
u′(zsi)

=
px

si

px
sj

pz
sj

pz
si

. (13)

Notice that the left sides of BOTH above equalities do not depend on other states if and only

if both si and sj are singleton events. Thus, potentially, we might get confused and aggregate

all singletons together. However, consider FOC between a singleton si and a state sj from
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non-singleton event Aj :

φ′
(∑

s∈Aj
P (s|Aj)u(ys)

)
φ′ (u(xsi))

φ′ (u(ysi)) φ′
(∑

s∈Aj
P (s|Aj)u(xs)

)
u′(ysj )

u′(xsj )
=

px
si

px
sj

py
sj

py
si

. (14)

Note that the left side depends on payoffs in all states at Aj and si, however, it does not

depend on the payoffs at other singletons. Hence, after recognizing the groups of the states that

might be potential events, we are able to identify which group is the group of singletons. Thus,

the partition π is identified.

Now note that by choosing different values of xsi , xsj , ysj and zsi when si and sj belong

to the same event, we can identify u(∙) up to affine transformation. After that we consider

the original first order condition again and identify the probability ratios P (si|A)
P (sj |A) . Given that

∑
s|A P (s|A) = 1, we can identify the probabilities.

In order to identify φ(∙), we consider states from different events. u(∙) and all conditional

probabilities have already been identified, hence, we can obtain the values of different ratios of

the kind

φ′
(∑

s∈Aj
P (s|Aj)u(ys)

)
φ′
(∑

s∈Ai
P (s|Ai)u(xs)

)

φ′
(∑

s∈Ai
P (s|Ai)u(ys)

)
φ′
(∑

s∈Aj
P (s|Aj)u(xs)

) .

Note that if Ai is a singleton and ysi was chosen such that ysi = xsi , then φ′
(∑

s∈Ai
P (s|Ai)u(xs)

)

and φ′
(∑

s∈Ai
P (s|Ai)u(ys)

)
cancel each other out. If Ai is not a singleton, φ′

(∑
s∈Ai

P (s|Ai)u(xs)
)

and φ′
(∑

s∈Ai
P (s|Ai)u(ys)

)
can be cancel out by choosing ys = xs for all s ∈ Ai. Hence, we

can identify φ(∙) up to affine transformation.

The only unknown variables left are priors about events pAi . However, we can obtain
pAi
pAj

from the first order condition for two states from different events (????). Finally, given that
∑

i pAi = 1, we identify pAi as well.

A.3 Proof of Theorem 2

Lemma 4. Suppose that π = {A, s}, where A = {s1, s2, . . . , sk}, and π̃ = {A\s1, s1, s}. Assume

also that both u(∙) and φ(∙) are differentiable concave functions. If cs denotes consumption in
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state s under π, while c̃s is consumption under π̃, then one of the following holds:

1. c̃s > cs, c̃1 < c1, and c̃i > ci, where i 6= 1;

2. c̃s > cs, c̃1 > c1, and c̃i < ci, where i 6= 1;

3. c̃s < cs, c̃1 < c1, and c̃i > ci, where i 6= 1;

4. c̃s < cs, c̃1 > c1, and c̃i < ci, where i 6= 1.

Proof. Denote VA(c) =
∑

si∈A P (si|A)u(ci), then the first order conditions between s1 and the

other states si ∈ A for the SASEU agent under π can be rewritten as

p1

pi

P (si)
P (s1)

=
u′(c1)
u′(ci)

. (15)

While the first order conditions between s1 and the other states in A for the SASEU agent under

π̃ are

p1

pi

P (si)
P (s1)

=
φ′(u(c̃1))

φ′(VA\s1
(c̃))

u′(c̃1)
u′(c̃i)

. (16)

The first order condition between outside state s and the states in A (including s1) under π is

pi

ps

P (s)
P (si)

=
φ′(VA(c))
φ′(u(cs))

u′(ci)
u′(cs)

. (17)

The first order condition between outside state s and s1 under π̃ is

p1

ps

P (s)
P (s1)

=
φ′(u(c̃1))
φ′(u(c̃s))

u′(c̃1)
u′(c̃s)

. (18)

The first order condition between outside state s and the other states in A under π̃ are

pi

ps

P (s)
P (si)

=
φ′(VA\s1

(c̃))

φ′(u(c̃s))
u′(c̃i)
u′(c̃s)

. (19)
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The first order condition between states in A\s1 under π and π̃ are

pi

pj

P (sj)
P (si)

=
u′(ci)
u′(cj)

and
pi

pj

P (sj)
P (si)

=
u′(c̃i)
u′(c̃j)

(20)

⇒
u′(ci)
u′(cj)

=
u′(c̃i)
u′(c̃j)

. (21)

The above conditions imply the following:

φ′(u(c̃s))
φ′(u(cs))

u′(c̃s)
u′(cs)

=
φ′(VA\s1

(c̃))

φ′(VA(c))
u′(c̃i)
u′(ci)

=
φ′(u(c̃1))
φ′(VA(c))

u′(c̃1)
u′(c1)

. (22)

Now we consider different cases.

1. φ′(u(c̃s))
φ′(u(cs))

u′(c̃s)
u′(cs)

< 1 and u′(c̃1)
u′(c1) > u′(c̃i)

u′(ci)
.

Concave u(∙) and φ(∙) imply that c̃s > cs. Now suppose that c̃1 ≥ c1, then 1 ≥ u′(c̃1)
u′(c1) > u′(c̃i)

u′(ci)

implying that c̃1 > c1 and c̃i > ci. However, note that the FOC for the states in A\s1

guarantees that if c̃i > ci, then c̃j > cj for all i, j ∈ A\s1. Which leads us to contradiction,

because consumption in all states cannot go up without the change in prices or income.

Hence, c̃1 < c1.

Now we are left to show that c̃i > ci. First, note that u′(c̃1)
u′(c1) > u′(c̃i)

u′(ci)
implies φ′(VA\s1

(c̃)) >

φ′(u(c̃1)), so u(c1) > u(c̃1) > VA\s1
(c̃). Then two situations are possible: (1) If VA\s1

(c̃) >

VA(c), then

VA(c) = P (s1|A)u(c1) + (1 − P (s1|A))VA\s1
(c) > P (s1|A)VA\s1

(c̃) + (1 − P (s1|A))VA\s1
(c)

⇒ VA\s1
(c̃) > VA\s1

(c).

According to the FOC for the states in A\s1, consumption in all states moves in the same

direction, hence, implying that c̃i > ci. (2) If VA\s1
(c̃) < VA(c), then u′(c̃i)

u′(ci)
< 1 implying

that c̃i > ci anyway.

Thus, we obtain the case 1 in the lemma, where c̃s > cs, c̃1 < c1, and c̃i > ci, where i 6= 1.

2. φ′(u(c̃s))
φ′(u(cs))

u′(c̃s)
u′(cs)

< 1 and u′(c̃1)
u′(c1) < u′(c̃i)

u′(ci)
.
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Concave u(∙) and φ(∙) imply that c̃s > cs. Now suppose that c̃i ≥ ci, then u′(c̃1)
u′(c1) < u′(c̃i)

u′(ci)
≤ 1

implying that c̃1 > c1 and c̃i > ci. However, note that the FOC for the states in A\s1

guarantees that if c̃i > ci, then c̃j > cj for all i, j ∈ A\s1. Which leads us to contradiction,

because consumption in all states cannot go up without the change in prices or income.

Hence, c̃i < ci for all si ∈ A\s1.

Now we are left to show that c̃1 > c1. First, note that u′(c̃i)
u′(ci)

> 1 implies φ′(VA\s1
(c̃)) <

φ′(VA(c)), so VA\s1
(c) > VA\s1

(c̃) > VA(c) ⇒ u(c1) < VA\s1
(c). Then two situations are

possible: (1) If u(c̃1) > VA(c), then

VA(c) = P (s1|A)u(c1) + (1 − P (s1|A))VA\s1
(c) > u(c1)

⇒ u(c̃1) > u(c1).

(2) If u(c̃1) < VA(c), then u′(c̃1)
u′(c1) < 1 implying that c̃1 > c1 anyway.

Thus, we obtain the case 2 in the lemma, where c̃s > cs, c̃1 > c1, and c̃i < ci, where i 6= 1.

3. φ′(u(c̃s))
φ′(u(cs))

u′(c̃s)
u′(cs)

> 1 and u′(c̃1)
u′(c1) > u′(c̃i)

u′(ci)
.

Concave u(∙) and φ(∙) imply that c̃s < cs. Now suppose that c̃i ≤ ci, then u′(c̃1)
u′(c1) > u′(c̃i)

u′(ci)
≥ 1

implying that c̃1 < c1 and c̃i ≤ ci. However, note that the FOC for the states in A\s1

guarantees that if c̃i < ci, then c̃j < cj for all i, j ∈ A\s1. Which leads us to contradiction,

because consumption in all states cannot go down without the change in prices or income.

Hence, c̃i > ci for all si ∈ A\s1.

Now we are left to show that c̃1 < c1. First, note that u′(c̃i)
u′(ci)

< 1 implies φ′(VA\s1
(c̃)) >

φ′(VA(c)), so VA\s1
(c) < VA\s1

(c̃) < VA(c) ⇒ u(c1) > VA\s1
(c) ⇒ u(c1) > VA(c). Then two

situations are possible: (1) If u(c̃1) < VA(c), and u(c1) > VA(c) ⇒ u(c1) > u(c̃1); (2) If

u(c̃1) > VA(c), then u′(c̃1)
u′(c1) > 1 implying that c̃1 < c1 anyway.

Thus, we obtain the case 3 in the lemma, where c̃s < cs, c̃1 < c1, and c̃i > ci, where i 6= 1.

4. φ′(u(c̃s))
φ′(u(cs))

u′(c̃s)
u′(cs)

> 1 and u′(c̃1)
u′(c1) < u′(c̃i)

u′(ci)
.

Concave u(∙) and φ(∙) imply that c̃s < cs. Now suppose that c̃1 ≤ c1, then 1 ≤ u′(c̃1)
u′(c1) < u′(c̃i)

u′(ci)

implying that c̃1 ≤ c1 and c̃i < ci. However, note that the FOC for the states in A\s1
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guarantees that if c̃i < ci, then c̃j < cj for all i, j ∈ A\s1. Which leads us to contradiction,

because consumption in all states cannot go down without the change in prices or income.

Hence, c̃1 > c1.

Now we are left to show that c̃i < ci. First, note that u′(c̃1)
u′(c1) < u′(c̃i)

u′(ci)
implies φ′(VA\s1

(c̃)) <

φ′(u(c̃1)), so u(c1) < u(c̃1) < VA\s1
(c̃). Then two situations are possible: (1) If VA\s1

(c̃) <

VA(c), then

VA(c) = P (s1|A)u(c1) + (1 − P (s1|A))VA\s1
(c) < P (s1|A)VA\s1

(c̃) + (1 − P (s1|A))VA\s1
(c)

⇒ VA\s1
(c̃) < VA\s1

(c).

According to the FOC for the states in A\s1, consumption in all states moves in the same

direction, hence, implying that c̃i < ci. (2) If VA\s1
(c̃) > VA(c), then u′(c̃i)

u′(ci)
> 1 implying

that c̃i < ci anyway.

Thus, we obtain the case 4 in the lemma, where c̃s < cs, c̃1 > c1, and c̃i < ci, where i 6= 1.

Lemma 5. Suppose that π = {A1, A2, . . . , Ak} and π̃ = {A1\s1, s1, A2, . . . , Ak}. Assume also

concave and differentiable u(∙) and φ(∙). Then for any event Ai such that i 6= 1 one of the

following holds:

1. c̃s > cs for all s ∈ Ai;

2. c̃s < cs for all s ∈ Ai.

Proof. Consider the first order condition between the states si and sj inside event Ai, note that

it is not affected by disaggregation of s1:

u′(cj)
u′(ci)

=
pj

pi

P (si)
P (sj)

=
u′(c̃j)
u′(c̃i)

.

Thus, if c̃j > cj , then c̃i > ci, and vice versa. Given that the condition is the same for all states

in Ai, we obtain that consumption in all states inside Ai moves in the same direction.
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Lemma 6. Suppose that π = {A1, A2, . . . , Ak} and π̃ = {A1\s1, s1, A2, . . . , Ak}. Assume also

concave and differentiable u(∙) and φ(∙). Then for all s ∈ Ai and all Ai such that i 6= 1 only one

of the following holds:

1. c̃s > cs;

2. c̃s < cs.

Proof. Note that the first order conditions between the states from the unaffected events stay

the same:

φ′(VAi(c))
φ′(VAj (c))

u′(ci)
u′(cj)

=
pi

pj

P (sj)
P (si)

=
φ′(VAi(c̃))
φ′(VAj (c̃))

u′(c̃i)
u′(c̃j)

,

where sj ∈ Aj and si ∈ Ai, j, i 6= 1. Also by previous lemma, we know that if c̃i > ci, then

VAi(c̃) > VAi(c), and vice versa. The same holds for consumption in the state sj . The result

follows.

Lemma 7. Consider two partitions π and π̃ such that π̃ = {A1\s1, s1, A2, . . . , Ak} and π =

{A1, A2, . . . , Ak}. In addition, suppose that both u(∙) and φ(∙) are concave and differentiable.

Then

1. u(c1) > VA\s1
(c) ⇔ u(c̃1) > VA\s1

(c̃) ⇔ c̃1 < c1, c̃i > ci for any si ∈ A\s1;

2. u(c1) > VA\s1
(c) ⇔ u(c̃1) > VA\s1

(c̃) ⇔ c̃1 < c1, c̃i > ci for any si ∈ A\s1.

Moreover, one of the following holds:

1. c̃s > cs for all s ∈ Ak and all k 6= 1;

2. c̃s < cs for all s ∈ Ak and all k 6= 1.

Proof. The last lemma implies that consumption in unaffected events move in the same direction,

then together with Lemma 4, the proof of this lemma follows.

The proof of the theorem follows from the fact that consumption in the states in B moves

in the same direction, because FOC between these states is not affected. It implies that VB(c)

moves together with consumption in any of the states in B. By using this result and previous

lemma, the rest follows.
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